首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为了解波形钢腹板矮塔斜拉桥新型组合结构桥梁的整体稳定特性,以跨径(58+118+188+108)m的某波形钢腹板矮塔斜拉桥为背景,根据波形钢腹板箱梁的力学行为特点,利用MIDAS Civil软件建立该桥杆系单元模型,对比ANSYS软件建立的空间块体板壳组合单元模型的计算结果,验证了杆系单元模型的有效性,在此基础上采用杆系模型计算全桥的整体稳定性。计算结果表明:恒载是桥梁重要的失稳因素,引起的第1阶失稳模态为面内主墩屈曲失稳;风荷载单独作用引起的第1阶失稳模态主要是面内对称弯曲失稳和面内反对称弯曲失稳,稳定系数较大;桥梁的弹性稳定系数最小值为19.79;桥梁结构整体失稳模态接近于高墩连续刚构桥的失稳模态;考虑几何非线性后稳定系数最小值为19.4,桥梁结构稳定性满足桥梁设计规范要求,该桥在运营阶段不会发生失稳破坏。  相似文献   

2.
波形钢腹板PC箱梁桥的设计与工程实例分析   总被引:1,自引:0,他引:1  
波形钢腹板PC箱梁桥具有自重轻、抗震性能好、受力合理明确、造型美观、施工方便等优点.用压杆稳定性理论有限元法给出波形钢腹板非弹性的剪切屈曲临界应力曲线,得出了为充分利用材料,设计宜控制屈曲发生在屈服区、非弹性区的原则,并给出波形钢腹板PC箱梁桥计算流程.以山东鄄城黄河公路大桥为例,介绍波形钢腹板PC箱梁桥的主桥设计与施工,分析其经济效益.该桥主桥跨度为70 m+11×120 m+70 m,波形钢腹板与混凝土顶、底板采用埋入式剪力键的连接方式,主桥采用悬臂施工,与常规PC箱梁桥相比可以节约12%的费用.  相似文献   

3.
波形钢腹板组合梁矮塔斜拉桥作为一种新型桥梁结构,有利于降低结构自重、减小梁高、增大跨径、减小地震反应,能够充分发挥波形钢腹板预应力混凝土组合梁桥和矮塔斜拉桥的两者技术优势,拓展了各自的应用范围和适用跨径。该文阐述了波形钢腹板组合梁矮塔斜拉桥的结构特点、国内外的发展和应用状况,并以日本栗东桥和南昌朝阳大桥为工程实例,介绍了波形钢腹板组合梁矮塔斜拉桥的构造特点和施工工艺。  相似文献   

4.
波形钢腹板矮塔斜拉桥静力特性分析   总被引:1,自引:0,他引:1  
分别以主跨180 m的波形钢腹板矮塔斜拉桥和PC箱梁矮塔斜拉桥为研究对象,通过数值模拟分析,比较2种不同主梁的矮塔斜拉桥在恒裁、预应力荷载以及温度荷载作用下结构的受力特性.结果表明,与PC箱梁矮塔斜拉桥相比,虽然波形钢腹板矮塔斜拉桥由混凝土收缩徐变引起主梁钢束预应力损失大,但其主梁的预应力效率更高,成桥状态下预应力储备...  相似文献   

5.
带加劲肋钢-混凝土组合蜂窝梁腹板成排开孔后,主要削弱了其抗剪稳定性和抗剪强度。为探明这一新型桥梁结构的力学特点,采用有限元方法对钢-混凝土组合蜂窝梁开孔腹板的抗剪性能进行了深入研究。对不同边界条件下的开孔腹板进行弹性剪切屈曲分析,考虑孔洞的影响引入径高比和宽高比参数,对实腹板剪切屈曲系数加以修正,并引入约束系数表征约束程度,推导得到了开孔腹板剪切屈曲系数的计算公式。建立开孔腹板抗剪极限承载能力有限元计算模型,考虑材料、几何双重非线性,对不同参数开孔腹板的抗剪承载能力进行了大量的有限元分析,在数据分析基础上量化弹性屈曲荷载和屈曲后荷载对开孔腹板抗剪承载能力的贡献。引入腹板的开孔率参数,提出了开孔腹板抗剪极限承载力的计算公式,同时分析了不同初始几何缺陷对开孔腹板抗剪性能的影响。结果表明:不同边界条件下的开孔腹板剪切屈曲系数公式与有限元值吻合良好;开孔腹板仍可发展一部分屈曲后强度,屈曲后强度可偏保守地表示为开孔腹板塑性强度的30%,开孔腹板抗剪极限承载力计算公式与有限元计算结果吻合较好,且总体偏于安全;不同的初始几何缺陷对开孔腹板荷载-位移曲线形式有较大影响,但对其抗剪承载能力影响很小。  相似文献   

6.
为研究正弦波形波纹腹板工字型钢板梁的抗剪性能,采用ABAQUS非线性有限元程序,借助于线弹性特征值屈曲分析以及弹塑性剪切屈曲分析(考虑腹板初始缺陷的影响),将典型正弦波形波纹腹板钢板梁的抗剪强度与梯形波纹腹板钢板梁做了对比,并分析了影响正弦波形波纹腹板钢板梁抗剪强度的关键因素.数值分析结果表明,在波长与波幅不变的情形下,正弦波形的抗剪承载力低于梯形形式,在设计中应予以注意;若通过减小波长保证材料用量不变,正弦波形的抗剪承载力与梯形形式相同;正弦波形波纹钢腹板钢板梁的剪切屈曲临界应力随着腹板厚度的增加或波长的减小而显著增大,而腹板高度与波幅均没有显著影响正弦波形波纹钢腹板的剪切屈曲临界应力对初始缺陷的敏感程度.  相似文献   

7.
某黄河大桥主桥上部结构有限元静力分析   总被引:2,自引:0,他引:2  
以某黄河大桥主桥(70 m+11×120 m+70 m波形钢腹板PC组合多跨连续箱梁桥)为背景,按合龙、张拉体外预应力钢束、施加二期恒载、施加活载等施工及营运流程,进行波形钢腹板预应力混凝土组合桥梁的上部结构顶底板混凝土应力、波形钢腹板应力及结构刚度(挠度)的有限元静力分析,验算其是否符合现行规范要求.结果表明,波形钢腹板的钢板厚度可以满足要求;墩顶处顶板不满足抗裂要求.正常使用极限状态下箱梁波形钢腹板竖向剪应力满足规范限值,但安全系数不高;波形钢腹板屈曲验算得到的剪切屈服强度为31 MPa,安全系数很大.  相似文献   

8.
以某大桥波形钢腹板异步浇筑施工为背景,针对波形钢腹板施工期局部应力集中问题,采用有限元分析软件Ansys建立波形钢腹板有限元模型并模拟异步浇筑施工过程。基于有限元模型和现场实测数据,得到了各施工工况下桥梁关键截面波形钢腹板的局部应力状态。研究表明:有限元模型与实测应力数据相对吻合,随着施工的进行,各项应力值均不断增大,0#块根部波形钢腹板剪应力实测值在施工到8#悬臂节段时达到最大值(23.3 MPa),低于有限元计算值(26.5 MPa)和钢腹板材料的强度设计值(310 MPa)。  相似文献   

9.
《中外公路》2021,41(3):89-91
生野大桥是一座7跨波纹钢腹板PC矮塔斜拉桥,位于日本兵库县神户市和高津交界处的新名神(名古屋至神户)高速公路上。大桥全长606 m,主跨188 m,是日本最大跨度的波形钢腹板矮塔斜拉桥。为加快桥梁施工进度,该桥采用了多种特殊施工措施。如:在P6号墩顶处顶推法施工、超大型挂篮悬臂法施工、预制混凝土防撞护栏施工等。该桥主塔斜拉索采用37S15.2钢绞线拉索双排布置方案;为解决尾流驰振引起的拉索振动问题,通过风洞试验分析,选取摩擦型阻尼器作为拉索减震装置。  相似文献   

10.
采用有限元法建立钢-混凝土组合桥梁的结构模型,分析了不同典型施工阶段下桥梁主梁和腹板结构的受力特征,获得了桥梁整体失稳状态。并以桥梁局部失稳状态分析斜拉桥结构的稳定性特征,获得影响斜拉桥稳定性的各影响因素关系。研究结果表明:全桥一阶整体失稳态下的总体稳定系数为7. 7,大于一般计算稳定系数4. 0;桥梁施工状态下,主梁最大应力出现在成桥阶段1 000 d后,桥面板承受最大压应力出现在中跨合拢阶段,均满足规范。对于桥梁主梁腹板,在设计荷载组合作用下,主梁腹板加劲肋局部位置易发生屈曲变形。当轴力/弯矩小于0. 5时,首先在梁段产生横梁侧倾失稳,随着轴力/弯矩比值的增加,由横梁侧倾斜转化为主梁腹板或加劲肋的失稳。  相似文献   

11.
以开口截面薄壁杆件的约束扭转理论为基础,推导出波形钢腹板Ⅰ型钢梁约束扭转时扭转中心的精确位置,并求得以扭转中心为极点的主扇性惯性矩,在此基础上求得波形钢腹板Ⅰ型钢梁的弹性弯扭屈曲临界荷载的计算公式.使用所得的计算公式对5片波形钢腹板Ⅰ型钢梁进行弹性弯扭屈曲临界荷载的计算,计算结果与ANSYS有限元结果吻合良好,验证了所得公式的正确性.最后,分析了波形钢腹板Ⅰ型钢梁波形的形状对其弹性弯扭屈曲临界荷载的影响.  相似文献   

12.
波形钢腹板梁的剪切强度由腹板的剪切屈曲控制,而既有研究中还缺乏对受剪波形钢腹板梁破坏过程中腹板本身应力状态变化的研究。因此,基于一组大尺寸的波形钢腹板工字梁极限剪切试验结果,对受剪波形钢腹板直至破坏过程中的应力状态进行了分析。验证了波形钢腹板梁的剪切破坏由腹板剪切屈曲导致,按照腹板应力状态的变化规律可以将剪切破坏划分为屈曲前、屈曲时、屈曲后三个阶段,并总结了各阶段的应力状态特征。  相似文献   

13.
大跨度薄壁墩连续刚构桥稳定性分析   总被引:1,自引:1,他引:1  
高墩大跨度连续刚构桥悬浇施工中,最大悬臂状态下结构的稳定性至关重要。运用线性和非线性屈曲两种分析方法,分别考虑结构的几何非线性,以及几何与材料双重非线性的影响,对武汉正在兴建的某大跨度连续刚构桥施工稳定性进行了分析。计算得到的线性屈曲稳定系数远远大于非线性稳定系数,表明线性屈曲分析结果不可靠,而宜采用非线性进行计算。运用边缘纤维屈服准则对非线性稳定分析进行判断,比运用极限承载力准则更快捷,更利于工程初设的快速运用。  相似文献   

14.
《中外公路》2021,41(2):87-90
日本安威川大桥是一座横跨一级河道安威川和茨木-龟冈线县道的大跨径波形钢腹板PC箱梁桥。该桥主跨179 m,主梁最大高度达11.5 m。该文通过非线性有限元分析法和模型试验手段对桥梁的抗剪强度进行了测试研究,验证了波形钢腹板对高腹桥的适用性。文中对比了4.8 m标准节段和6.4 m长节段两种悬臂施工方法的特点,强调了设计中应注意的事项以及悬臂施工的具体步骤,并对大跨径波形钢腹板PC箱梁桥的扭转性能和悬臂施工的屈曲风险两个关键问题进行了重点论述。  相似文献   

15.
新密市溱水路大桥设计在中国首次采用了波形钢腹板无背索部分斜拉桥结构.笔者介绍了弹性稳定计算理论、研究第一类稳定问题的工程意义、基于数值解的第一类稳定问题的有限元分析方法和3种方法的稳定安全系数表达式.采用Midas/Civil屈曲分析模块,按照上述方法3计算得到波形钢腹板箱梁无背索部分斜拉桥结构整体最小稳定安全系数及临...  相似文献   

16.
通过非线性有限元方法分析波纹钢腹板剪切屈曲极限荷载和屈曲模态,采用一致缺陷模态法模拟波形尺寸缺陷,钢板厚度缺陷则通过钢板厚度分布函数对单元厚度的修正来引入。分析结果表明过大的波形尺寸缺陷会降低波纹钢腹板的剪切屈曲极限荷载,而波纹钢腹板对因钢板厚度缺陷而引起的过早屈曲要大大优于平钢腹板,微小的厚度缺陷对波纹钢腹板的剪切屈曲极限荷载影响很小。  相似文献   

17.
本文介绍了确定波形钢腹板几何尺寸需考虑的因素,并以常用的3种波形钢腹板的几何尺寸为基础,通过局部屈曲和整体屈曲的控制条件,初步拟定新型波形钢腹板的几何尺寸。通过有限元软件,对波形钢腹板进行特征值屈曲分析,研究腹板高度及厚度对3种新型波形钢腹板剪切屈曲强度的影响,最终得到新型波形钢腹板的几何尺寸的取值范围。  相似文献   

18.
为指导波形钢腹板矮塔斜拉桥施工,对该类型桥梁的施工全过程进行力学性能分析。以(58+118+188+108)m的朝阳沟特大桥为研究对象,采用MIDAS/FEA有限元软件建立有限元模型,对其施工全过程进行计算。计算结果表明:施工过程中张拉悬臂顶板预应力束使主梁悬臂端轻微下挠,对悬臂施工主梁悬臂端竖向变形的影响远小于张拉斜拉索和浇筑梁段混凝土产生的影响;悬臂根部顶、底板应力在合龙束张拉时应力增量较大,应在施工中重点关注;斜拉索索力受施工阶段的影响不大,索力分2次张拉调整到成桥索力是合适的;矮塔斜拉桥桥塔和主梁刚度较大,两桥塔塔顶位移在悬臂施工过程中基本为0,顶推力作用下一侧桥塔塔顶向边跨桥台侧偏位约5cm,另一侧桥塔塔顶向边跨桥台侧偏位约4cm,可抵消后期运营中桥塔向跨中的偏位。  相似文献   

19.
波形钢腹板组合箱梁从根本上回避了一般预应力混凝土箱梁桥腹板开裂病害问题,合理地将钢、混凝土两种材料结合,改善结构力学性能并减轻结构自重,理论上波形钢腹板梁桥可以超过混凝土腹板梁桥达到更大的跨度。由于梁桥中墩墩顶处负弯矩承载力有限,通过负弯矩对比的方式,试设计主跨360 m的波形钢腹板组合梁桥,并建立有限元模型,对结构抗弯、抗剪承载力,以及连接件等进行计算,结果表明试设计方案是成立的。钢腹板整体屈曲稳定性是制约波形钢腹板梁桥跨径增大的主要因素之一。为解决现有的波形钢腹板型号应用在大跨度梁桥中整体屈曲强度折减较严重的问题,研究设置纵向横隔和采用大尺寸波形钢腹板型号的应对措施,从而为波形钢腹板梁桥向更大跨度发展做出积极探索。  相似文献   

20.
为研究波形钢腹板矮塔斜拉桥塔墩梁固结区域的复杂受力情况,采用有限元法对该处进行精细化数值模拟,分析单箱三室波形钢腹板截面总剪力中腹板承担剪力的比例,直、斜腹板承担的剪力及剪应力比较,内衬混凝土对腹板剪应力分布的影响,以及顶、底板端部正应力的整体计算与局部计算比较分析.结果表明:塔墩梁固结段波形钢腹板承担的剪力远小于常规梁段;直、斜腹板剪应力分布规律一致,但由于单箱三室截面中各室宽度不同,各腹板承担的剪力也不同,设计中应考虑此影响;矮塔斜拉桥主梁承担剪力较小,设计中可省略内衬混凝土设置;整体模型计算中得到的顶、底板正应力基本偏大于局部模型计算结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号