首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
In the face of growing concerns about greenhouse gas emissions, there is increasing interest in forecasting the likely demand for alternative fuel vehicles. This paper presents an analysis carried out on stated preference survey data on California consumer responses to a joint vehicle type choice and fuel type choice experiment. Our study recognises the fact that this choice process potentially involves high correlations that an analyst may not be able to adequately represent in the modelled utility components. We further hypothesise that a cross-nested logit structure can capture more of the correlation patterns than the standard nested logit model structure in such a multi-dimensional choice process. Our empirical analysis and a brief forecasting exercise produce evidence to support these assertions. The implications of these findings extend beyond the context of the demand for alternative fuel vehicles to the analysis of multi-dimensional choice processes in general. Finally, an extension verifies that further gains can be made by using mixed GEV structures, allowing for random heterogeneity in addition to the flexible correlation structures.  相似文献   

2.
The number of conventionally fuelled motor vehicles in use is increasing worldwide despite warnings about finite fossil fuel and the detrimental impacts of burning such fuels. While electric vehicles, the subject of much research, generate far less emissions and offer the potential for power from renewable sources, they are yet to significantly penetrate the market. Tangible barriers such as price and vehicle range still exist, but consumer attitudes also drive behaviour. This paper examines attributes in a framework relatively new to transportation and energy policy; best–worst scaling. This method is widely considered an improvement over traditional methods of eliciting attitudes and beliefs, where respondents select attitudes they find best or worst from a set of attitudinal statements. To avoid potential endogeneity bias, we jointly model attitudes and choice for the first time with best–worst data. It is found that energy crisis, air quality and climate change concerns influence behaviour with respect to vehicle range and that travel behaviour change and forms of government incentives are needed influences on behaviour with respect to vehicle emissions. It is argued that correctly modelling attitudes reduces the error term of the vehicle choice model and provides policy makers with an improved lens for assessing behaviour. Additionally, the methods described within can easily be adapted to other policy scenarios.  相似文献   

3.
With increasing demand for air transportation worldwide and decreasing marginal fuel efficiency improvements, the contribution of aviation to climate change relative to other sectors is projected to increase in the future. As a result, growing public and political pressures are likely to further target air transportation to reduce its greenhouse gas emissions. The key challenges faced by policy makers and air transportation industry stakeholders is to reduce aviation greenhouse gas emissions while sustaining mobility for passengers and time-sensitive cargo as well as meeting future demand for air transportation in developing and emerging countries. This paper examines five generic policies for reducing the emissions of commercial aviation; (1) technological efficiency improvements, (2) operational efficiency improvements, (3) use of alternative fuels, (4) demand shift and (5) carbon pricing (i.e. market-based incentives). In order to evaluate the impacts of these policies on total emissions, air transport mobility, airfares and airline profitability, a system dynamics modeling approach was used. The Global Aviation Industry Dynamics (GAID) model captures the systemic interactions and the delayed feedbacks in the air transportation system and allows scenarios testing through simulations. For this analysis, a set of 34 scenarios with various levels of aggressiveness along the five generic policies were simulated and tested. It was found that no single policy can maintain emissions levels steady while increasing projected demand for air transportation. Simulation results suggest that a combination of the proposed policies does produce results that are close to a “weak” sustainability definition of increasing supply to meet new demand needs while maintaining constant or increasing slightly emissions levels. A combination of policies that includes aggressive levels of technological and operations efficiency improvements, use of biofuels along with moderate levels of carbon pricing and short-haul demand shifts efforts achieves a 140% increase in capacity in 2024 over 2004 while only increasing emissions by 20% over 2004. In addition, airline profitability is moderately impacted (10% reduction) compared to other scenarios where profitability is reduced by over 50% which pose a threat to necessary investments and the implementation of mitigating measures to reduce CO2 emissions. This study has shown that an approach based on a portfolio of mitigating measures and policies spanning across technology and operational improvements, use of biofuels, demand shift and carbon pricing is required to transition the air transportation industry close to an operating point of environmental and mobility sustainability.  相似文献   

4.
Using a choice model, we estimate the preferences for alternative fuel vehicles by Dutch local governments. The analysis shows that local governments are willing to pay between 25% and 50% extra for an alternative fuel vehicle without a serious loss of utility. Further, local emissions are an important criterion on which to base a decision, especially for municipalities and provinces. We also calculate the utility for a number of prominent alternative fuel vehicles. We find that show that local governments value the battery electric vehicle and biogas internal combustion engine equally. It is important, however, that the time to refuel for electric vehicles is reduced to about 30 min.  相似文献   

5.
This paper examines the factors and incentives that are most likely to influence households’ choice for cleaner vehicles in the metropolitan area of Hamilton, Canada. Data collection is based on experimental design and stated choice methods through an Internet survey. Choice alternatives included a conventional gasoline, a hybrid and an alternative fuelled vehicle. Each option is described by a varying set of vehicle attributes and economic incentives, customized per respondent. Controlling for individual, household and dwelling-location characteristics, parameters of a nested logit model indicates that reduced monetary costs, purchase tax relieves and low emissions rates would encourage households to adopt a cleaner vehicle. On the other hand, incentives such as free parking and permission to drive on high occupancy vehicle lanes with one person in the car were not significant. Furthermore, limited fuel availability is a concern when households considered the adoption of an alternative fuelled vehicle. Finally, willingness-to-pay extra for a cleaner vehicle is computed based on the estimated parameters.  相似文献   

6.
This study estimates the effects of an advanced traveler general information system (ATGIS), which includes fuel consumption and health-related emissions cost information on transportation network users’ travel choice behavior for recurrent congestion conditions. The effects are estimated using four different formulations based on four different behavioral assumptions. Incorporating stochastic features in link cost estimation rather than in route choice, we provide a novel modeling approach that enables us to use transportation planning models of major metropolitan areas without a need for major computationally-expensive changes in the existing models. We examined the effects of an ATGIS on the Fresno, CA, road network and found several interesting results. First, the ATGIS impact is closely related to pre-system (prior to the implementation of an ATGIS) perceived fuel and emissions costs. Total travel time in the city can be reduced by 17% (no pre-system perceived costs) to 1% (accurate pre-system perceived costs), and even increased by 1% (higher-than-actual pre-system perceived costs). Second, the addition of emissions costs, although negligible relative to fuel and time costs, can effectively reduce total system-wide travel time by up to 1% and fuel consumption by up to 0.6% during peak hours. Third, the ATGIS can reduce annual social costs by as much as $1053 million (high gas price, no pre-system perception) to $48 million (medium gas price, accurate pre-system perception), which are comparable to social cost savings by a congestion pricing (CP) scheme in the study area.  相似文献   

7.
Standards for fuel consumption and carbon dioxide emissions are implemented worldwide in most light-duty vehicle markets. Regulatory drive cycles, defined as specific time-speed patterns, are used to measure levels of fuel consumption and emissions. These measurements should realistically reflect real world driving performance, however there is increasing concern about their adequacy due to the discrepancies observed between certified and real world consumption and emissions values. One of the main reasons for the discrepancy is that current testing protocols do not account for non-mechanical vehicle energy needs, such as passengers’ thermal comfort needs and the use of electric auxiliaries on-board. Cabin heating and cooling can especially lead to considerable increase in vehicle energy consumption. This paper presents a simulation-based assessment framework to account for the additional fuel consumption related to the cabin thermal energy and auxiliary needs under the worldwide-harmonized light vehicles test procedure (WLTP). A vehicle cabin model is developed and the thermal comfort energy needs are derived for cooling and heating, depending on ambient external temperature under cold, moderate and warm climates. A modification to the WLTP is proposed by including the generated power profiles for thermal comfort and auxiliary needs. Dynamic programming is used to compute the fuel consumption on the modified WLTP for a rechargeable series hybrid electric vehicle (SHEV) architecture. Results show consumption increases of 20% to 96% compared to the currently adopted WLTP, depending on the considered climate.  相似文献   

8.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   

9.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

10.
Some travel demand management policies such as road pricing have been widely studied in literature. Rationing policies, including vehicle ownership quota and vehicle usage restrictions, have been implemented in several megaregions to address congestion and other negative transportation externalities, but not well explored in literature. Other strategies such as Vehicle Mileage Fee have not been well accepted by policy makers, but attract growing research interest. As policy makers face an increasing number of policy tools, a theoretical framework is needed to analyze these policies and provide a direct comparison of their welfare implications such as efficiency and equity. However, such a comprehensive framework does not exist in literature. To bridge this gap, this study develops an analytical framework for analyzing and comparing travel demand management policies, which consists of a mathematical model of joint household vehicle ownership and usage decisions and welfare analysis methods based on compensating variation and consumer surplus. Under the assumptions of homogenous users and single time period, this study finds that vehicle usage rationing performs better when relatively small percentages of users (i.e. low rationing ratio) are rationed off the roads and when induced demand elasticity resulting from congestion mitigation is low. When the amount of induced demand exceeds a certain level, it is shown analytically that vehicle usage restrictions will always cause welfare losses. When the policy goal is to reduce vehicle travel by a fixed portion, road pricing provides a larger welfare gain. The performance of different policies is influenced by network congestion and congestibility. This paper further generalizes the model to consider heterogenous users and demonstrates how it can be applied for policy analysis on a real network after careful calibration.  相似文献   

11.
The future of US transport energy requirements and emissions is uncertain. Transport policy research has explored a number of scenarios to better understand the future characteristics of US light-duty vehicles. Deterministic scenario analysis is, however, unable to identify the impact of uncertainty on the future US vehicle fleet emissions and energy use. Variables determining the future fleet emissions and fuel use are inherently uncertain and thus the shortfall in understanding the impact of uncertainty on the future of US transport needs to be addressed. This paper uses a stochastic technology and fleet assessment model to quantify the uncertainties in US vehicle fleet emissions and fuel use for a realistic yet ambitious pathway which results in about a 50% reduction in fleet GHG emissions in 2050. The results show the probability distribution of fleet emissions, fuel use, and energy consumption over time out to 2050. The expected value for the fleet fuel consumption is about 450 and 350 billion litres of gasoline equivalent with standard deviations of 40 and 80 in 2030 and 2050, respectively. The expected value for the fleet GHG emissions is about 1360 and 850 Mt CO2 equivalent with standard deviation of 130 and 230 in 2030 and 2050 respectively. The parameters that are major contributors to variations in emissions and fuel consumption are also identified and ranked through the uncertainty analysis. It is further shown that these major contributors change over time, and include parameters such as: vehicle scrappage rate, annual growth of vehicle kilometres travelled in the near term, total vehicle sales, fuel economy of the dominant naturally-aspirated spark ignition vehicles, and percentage of gasoline displaced by cellulosic ethanol. The findings in this paper demonstrate the importance of taking uncertainties into consideration when choosing amongst alternative fuel and emissions reduction pathways, in the light of their possible consequences.  相似文献   

12.
The growth of vehicle sales and use internationally requires the consumption of significant quantities of energy and materials, and contributes to the deterioration of air-quality and climate conditions. Advanced propulsion systems and electric drive vehicles have substantially different characteristics and impacts. They require life cycle assessments and detailed comparisons with gasoline powered vehicles which, in turn, should lead to critical updates of traditional models and assumptions. For a comprehensive comparison of advanced and traditional light duty vehicles, a model is developed that integrates external costs, including emissions and time losses, with societal and consumer life cycle costs. Life cycle emissions and time losses are converted into costs for seven urban light duty vehicles. The results, which are based on vehicle technology characteristics and transportation impacts on environment, facilitate vehicle comparisons and support policy making in transportation. Substantially, more sustainable urban transportation can be achieved in the short-term by promoting policies that increase vehicle occupancy; in the intermediate-term by increasing the share of hybrid vehicles in the car market and in the long-term by the widespread use of electric vehicles. A sensitivity-analysis of life cost results revealed that vehicle costs change significantly for different geographical areas depending on vehicle taxation, pricing of gasoline, electric power and pollution. Current practices in carbon and air quality pricing favor oil and coal based technologies. However, increasing the cost of electricity from coal and other fossil fuels would increase the variable cost for electric vehicles, and tend to favor the variable cost of hybrid vehicles.  相似文献   

13.
This paper presents an analysis of vehicle regenerative braking systems as a quick and relatively easy means of achieving higher overall fuel efficiency and lowering carbon emissions. The system involves the installation of an additional electric motor/generator in parallel to the vehicle’s internal combustion engine and is used in conjunction with a DCDC converter and ultracapacitor. The system is used to recapture the energy lost in vehicle braking, significantly reducing a vehicle’s overall energy consumption and lowering vehicle emissions. Experimentally-based evidence is collected and compared for two sample vehicles to deduce the potential fuel and emissions saving.  相似文献   

14.
Automobile use leads to external costs associated with emissions, congestion, noise and other impacts. One option for minimizing these costs is to introduce road pricing and parking charges to reduce demand for single occupant vehicle (SOV) use, while providing improvements to alternatives to encourage mode switching. However, the impact of these policies on urban mode choice is uncertain, and results reported from regions where charging has been introduced may not be transferable. In particular, revealed preference data associated with cost recovery tolls on single facilities may not provide a clear picture of driver response to tolls for demand management. To estimate commuter mode choice behaviour in response to such policies, 548 commuters from a Greater Vancouver suburb who presently drive alone to work completed an individually customized discrete choice experiment (DCE) in which they chose between driving alone, carpooling or taking a hypothetical express bus service when choices varied in terms of time and cost attributes. Attribute coefficients identified with the DCE were used in a predictive model to estimate commuter response to various policy oriented combinations of charges and incentives. Model results suggest that increases in drive alone costs will bring about greater reductions in SOV demand than increases in SOV travel time or improvements in the times and costs of alternatives beyond a base level of service. The methods described here provide an effective and efficient way for policy makers to develop an initial assessment of driver reactions to the introduction of pricing policies in their particular regions.  相似文献   

15.
In this paper, we report the results of a stated choice experiment, which was conducted to examine truck drivers?? route choice behavior. Of particular interest are the questions (i) what is the relative importance of road accessibility considerations via-a-vis traditional factors influencing route choice behavior, (ii) what are the influences of particular personal and situational variables on the evaluation of route attributes, (iii) how sensitive are truck drivers for possible pricing policies, and (iv) is there a difference in impact if environmental concerns are framed as a bonus or as a pricing instrument. The main findings indicate that road accessibility characteristics have a substantial impact on route preferences which is of the same order of magnitude as variation in travel times. This suggests that provision of adequate travel information in itself can be an effective instrument to prevent negative externalities of good transport associated with shortest routes. Furthermore, the results indicate that truck drivers/route planners when choosing a route are relatively sensitive to road pricing schemes and rather insensitive to environmental bonuses.  相似文献   

16.
The transition to a low carbon transport world requires a host of demand and supply policies to be developed and deployed. Pricing and taxation of vehicle ownership plays a major role, as it affects purchasing behavior, overall ownership and use of vehicles. There is a lack in robust assessments of the life cycle energy and environmental effects of a number of key car pricing and taxation instruments, including graded purchase taxes, vehicle excise duties and vehicle scrappage incentives. This paper aims to fill this gap by exploring which type of vehicle taxation accelerates fuel, technology and purchasing behavioral transitions the fastest with (i) most tailpipe and life cycle greenhouse gas emissions savings, (ii) potential revenue neutrality for the Treasury and (iii) no adverse effects on car ownership and use.The UK Transport Carbon Model was developed further and used to assess long term scenarios of low carbon fiscal policies and their effects on transport demand, vehicle stock evolution, life cycle greenhouse gas emissions in the UK. The modeling results suggest that policy choice, design and timing can play crucial roles in meeting multiple policy goals. Both CO2 grading and tightening of CO2 limits over time are crucial in achieving the transition to low carbon mobility. Of the policy scenarios investigated here the more ambitious and complex car purchase tax and feebate policies are most effective in accelerating low carbon technology uptake, reducing life cycle greenhouse gas emissions and, if designed carefully, can avoid overburdening consumers with ever more taxation whilst ensuring revenue neutrality. Highly graduated road taxes (or VED) can also be successful in reducing emissions; but while they can provide handy revenue streams to governments that could be recycled in accompanying low carbon measures they are likely to face opposition by the driving population and car lobby groups. Scrappage schemes are found to save little carbon and may even increase emissions on a life cycle basis.The main policy implication of this work is that in order to reduce both direct and indirect greenhouse gas emissions from transport governments should focus on designing incentive schemes with strong up-front price signals that reward ‘low carbon’ and penalize ‘high carbon’. Policy instruments should also be subject to early scrutiny of the longer term impacts on government revenue and pay attention to the need for flanking policies to boost these revenues and maintain the marginal cost of driving.  相似文献   

17.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

18.
Growing concerns over climate change have led to an increasing interest in the role of the built environment to reduce transportation greenhouse gas (GHG) emissions. Many studies have reported that compact, mixed-use, and well-connected developments reduce vehicle miles traveled (VMT). Others, however, argue that densification and mixture of land uses can slow down vehicle movements, and consequently generate more driving emissions. Methodologically, VMT is only a proxy, not an exact measure of emissions. This study quantifies the net effects of the built environment on household vehicle emissions through a case study of Austin, TX. The study employed structural equation modeling (SEM) techniques and estimated path models to improve understanding of the relationship between the built environment and vehicle emissions. The results show a rather complex picture of the relationship. Densification can reduce regional vehicle emissions despite its secondary effect of reduced vehicle travel speed. A 1% increase in density was found to reduce household vehicle emissions by 0.1%. However, intensification of the design feature of the built environment in developed areas may work in the opposite direction; the modeling results showed a 1% increase in grid-like network being associated with 0.8% increase in household vehicle emissions. Based on the results, the study addressed the potential of and the challenges to reducing vehicle emissions through modifying the built environment in local areas.  相似文献   

19.
Accurate road-traffic emission inventories are of great interest to metropolitan planning agencies especially in the appraisal of regional transport policies. Integrated road transport emission models are an effective means of establishing emission estimates, yet their development requires significant investments in data and resources. It is therefore important to investigate which data inputs are the most critical to inventory accuracy. To address this issue, an integrated transport and emissions model is developed using the Montreal metropolitan region as a case-study. Daily regional hydrocarbon (HC) emissions from private individual travel are estimated, including the excess emissions due to engine starts. The sensitivity of emission estimates is then evaluated by testing various levels of input aggregation common in practice and in previous research. The evaluated inputs include the effect of start emissions, ambient weather conditions, traffic speed, path choice, and vehicle registry information. Inherent randomness within the integrated model through vehicle selection and path allocation is also evaluated. The inclusion of start emissions is observed to have the largest impact on emission inventories, contributing approximately 67 % of total on-road HC emissions. Ambient weather conditions (season) and vehicle registry data (types, model years) are also found to be significant. Model randomness had a minimal effect in comparison with the impact of other variables.  相似文献   

20.
The potential for improving the fuel economy of conventional, gasoline-powered automobiles through optimized application of recent technology advances is analyzed. Results are presented at three levels of technical certainty, ranging from technologies already in use to technologies facing technical constraints (such as emissions control problems) which might inhibit widespread use. A fleet-aggregate, engineering-economic analysis is used to estimate a range of U.S. new car fleet average fuel economy levels achievable given roughly 10 years of lead time. Technology cost estimates are compared to fuel savings in order to determine likely cost-effective levels of fuel economy, which are found to range from 39 miles per gallon to 51 miles per gallon depending on technology certainty level. The corresponding estimated increases in average new car price range from $540 to $790 (1993$). Estimated fuel savings payback times average less than 3 years and the cost of conserved energy averages $0.50 per gallon, indicating that these levels of fuel economy improvement are cost-effective over a vehicle lifetime. A vehicle stock turnover model is used to project the reductions in gasoline consumption and associated emissions that would follow if the estimated fuel economy levels are achieved. Potential trade-offs regarding vehicle performance, safety, and emissions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号