首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The numerical wheel wear prediction in railway applications is of great importance for different aspects, such as the safety against vehicle instability and derailment, the planning of wheelset maintenance interventions and the design of an optimal wheel profile from the wear point of view. For these reasons, this paper presents a complete model aimed at the evaluation of the wheel wear and the wheel profile evolution by means of dynamic simulations, organised in two parts which interact with each other mutually: a vehicle's dynamic model and a model for the wear estimation. The first is a 3D multibody model of a railway vehicle implemented in SIMPACK?, a commercial software for the analysis of mechanical systems, where the wheel–rail interaction is entrusted to a C/C++user routine external to SIMPACK, in which the global contact model is implemented. In this regard, the research on the contact points between the wheel and the rail is based on an innovative algorithm developed by the authors in previous works, while normal and tangential forces in the contact patches are calculated according to Hertz's theory and Kalker's global theory, respectively. Due to the numerical efficiency of the global contact model, the multibody vehicle and the contact model interact directly online during the dynamic simulations.

The second is the wear model, written in the MATLAB® environment, mainly based on an experimental relationship between the frictional power developed at the wheel–rail interface and the amount of material removed by wear. Starting from a few outputs of the multibody simulations (position of contact points, contact forces and rigid creepages), it evaluates the local variables, such as the contact pressures and local creepages, using a local contact model (Kalker's FASTSIM algorithm). These data are then passed to another subsystem which evaluates, by means of the considered experimental relationship, both the material to be removed and its distribution along the wheel profile, obtaining the correspondent worn wheel geometry.

The wheel wear evolution is reproduced by dividing the overall chosen mileage to be simulated in discrete spatial steps: at each step, the dynamic simulations are performed by means of the 3D multibody model keeping the wheel profile constant, while the wheel geometry is updated through the wear model only at the end of the discrete step. Thus, the two parts of the whole model work alternately until the completion of the whole established mileage. Clearly, the choice of an appropriate step length is one of the most important aspects of the procedure and it directly affects the result accuracy and the required computational time to complete the analysis.

The whole model has been validated using experimental data relative to tests performed with the ALn 501 ‘Minuetto’ vehicle in service on the Aosta–Pre Saint Didier track; this work has been carried out thanks to a collaboration with Trenitalia S.p.A and Rete Ferroviaria Italiana, which have provided the necessary technical data and experimental results.  相似文献   

2.
In this article, a wheel life prediction model considering wear and rolling contact fatigue (RCF) is developed and applied to a heavy-haul locomotive. For wear calculations, a methodology based on Archard's wear calculation theory is used. The simulated wear depth is compared with profile measurements within 100,000?km. For RCF, a shakedown-based theory is applied locally, using the FaStrip algorithm to estimate the tangential stresses instead of FASTSIM. The differences between the two algorithms on damage prediction models are studied. The running distance between the two reprofiling due to RCF is estimated based on a Wöhler-like relationship developed from laboratory test results from the literature and the Palmgren-Miner rule. The simulated crack locations and their angles are compared with a five-year field study. Calculations to study the effects of electro-dynamic braking, track gauge, harder wheel material and the increase of axle load on the wheel life are also carried out.  相似文献   

3.
4.
This paper outlines various analytical approaches of varying complexities to model the wheel in the ride dynamic formulation of off-road tracked vehicles. In addition to a proposed model, four analytical models available in the literature are compared to study their effectiveness in modeling the wheel/track-terrain interaction for ride dynamic evaluation of typical high mobility tracked vehicles. The ride dynamic model used in this study describes the bounce-pitch plane motion of an armoured personnel carrier (Ml 13 APC) traversing over an arbitrary rigid terrain profile at constant speed. The ride dynamic response of the tracked vehicle is evaluated with different wheel models, and compared against field-measured ride data. The relative performance of different wheel models are assessed based on the accuracy of response prediction and associated computational time. The proposed wheel model is found to perform very well in comparison, and is equally applicable for the case of wheeled vehicles.  相似文献   

5.
The model for analysing wear and fatigue defect formation is developed based on the approaches of contact and fracture mechanics. The model includes the solution of the contact problem for the wheel and rail to find the shape, size and position of the contact zones and the contact stresses and calculation of the surface wear and the function of damage accumulation in the rail and wheel. The wear rate and the worn-profile evolution of the wheel surface are calculated using both statistic and deterministic approaches to modelling of vehicle dynamics (tribo-dynamic modelling). The influence of the evolution of the wheel–rail profiles due to wear on the damage accumulation process is analysed. It is shown that for some values of the wear rate coefficient, the wear process can prevent the crack initiation under the wheel surface.  相似文献   

6.
论轮胎的磨损   总被引:3,自引:0,他引:3  
轮胎磨损除会直接增加汽车的使用成本外,还会影响汽车的功率消耗、轮胎与路面间的附着性能等。对轮胎磨损的机理进行了探讨,并着重讨论了影响轮胎磨损的各种因素及其影响机理。通过分析得出的一些结论对正确设计和使用汽车轮胎具有一定的指导意义。  相似文献   

7.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

8.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

9.
The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen–Hedrick–Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.  相似文献   

10.
Wheel–rail interface management is imperative to railway operation and its maintenance represents a major share of the total maintenance cost. In general, the course of events usually called wear is a complicated process involving several modes of material deterioration and contact surface alteration. Thus material removal or relocation, plastic flow and phase transformation may take place at, just below, or in-between the contacting surfaces. A higher degree of predictability of deterioration mechanisms and a firm basis for optimisation of the wheel–rail system are anticipated to reveal a great potential for cost savings. Wear in the sense of material loss and related wheel–rail profile evolution represents one of several modes of damage. The purpose of this survey is to explore research on wear simulation, to some degree extended to neighbouring disciplines. It is believed that a cross-disciplinary approach involving, for instance, adhesive and abrasive wear, surface plasticity, and rolling contact fatigue opens new perspectives to improved damage prediction procedures.  相似文献   

11.
The polygonal wear around the wheel circumference could pose highly adverse influences on the wheel/rail interactions and thereby the performance of the vehicle system. In this study, the effects of wheel polygonalisation on the dynamic responses of a high-speed rail vehicle are investigated through development and simulations of a comprehensive coupled vehicle/track dynamic model. The model integrates flexible slab track, wheelsets and axle boxes subsystem models so as to account for elastic deformations caused by impact loads induced by the wheel polygonalisation. A field-test programme was undertaken to acquire the polygonal wear profile and axle box acceleration response of a high-speed train, and the data are used to demonstrate the validity of the coupled vehicle/track system model. Subsequently, the effects of wheel polygonalisation are evaluated in terms of wheel/rail impact forces, axle box vertical acceleration and dynamic stress developed in the axle considering different amplitudes and harmonic orders of the polygonal wear. The results suggest that the high-order wheel polygonalisation can give rise to high-frequency impact loads at the wheel/rail interface, and excite some of the vibration modes of the wheelset and the axle box leading to high-magnitude axle box acceleration and dynamic stress in the wheelset axle.  相似文献   

12.
Wheel–rail wear is one of the important problems in the railway industry, especially from the point of safety, maintenance, and replacement cost. To investigate this phenomenon, it is necessary to simulate the wheel–rail interaction. The simulation results and in particular the wear number is not tangible enough to explain the wear condition of the system. For one set of simulation performed on two different railway systems one could obtain the same wear numbers, of say 100, while having two completely different wear rates. In order to have a better understanding of the wear condition, it is proposed to convert the wear numbers to wear rates. In doing so by measuring the wear rate, one determines the rate at which the wheel flange thickness is reduced. In this research, a new approach has been proposed to determine the wheel wear rate through multi-body dynamic analysis and simulation and the field measurements carried out on the fleet of one of Tehran's subway lines. This procedure could also be expanded to determine a wear criterion for specific lines and their fleets. Having this wear criterion would provide a better understanding of the simulation results either prior to the construction of railway lines or for the presently used ones. In other words, designers can simulate a railway line, not being constructed yet, and with a good approximation determine the critical points along the line with high wear rates, and make necessary modifications to decrease the wear.  相似文献   

13.
Accurate and efficient contact models for wheel–rail interaction are essential for the study of the dynamic behaviour of a railway vehicle. Assessment of the contact forces and moments, as well as contact geometry provide a fundamental foundation for such tasks as design of braking and traction control systems, prediction of wheel and rail wear, and evaluation of ride safety and comfort. This paper discusses the evolution and the current state of the theories for solving the wheel–rail contact problem for rolling stock. The well-known theories for modelling both normal contact (Hertzian and non-Hertzian) and tangential contact (Kalker's linear theory, FASTSIM, CONTACT, Polach's theory, etc.) are reviewed. The paper discusses the simplifying assumptions for developing these models and compares their functionality. The experimental studies for evaluation of contact models are also reviewed. This paper concludes with discussing open areas in contact mechanics that require further research for developing better models to represent the wheel–rail interaction.  相似文献   

14.
通过对3台前轮内侧有偏磨现象的SUV汽车进行不同加载条件下的车轮跳动量测试和车轮定位参数变化的测试发现,前轮前柬随车轮上跳过程变成负值,且明显偏离标准范围.通过结构分析、理论计算与实测值对比可知,车辆在负载行驶时前束值偏离是造成轮胎内侧偏磨的主要原因.可采用降低转向臂与转向拉杆下安装平面的临时措施改进;永久性改进措施为严格控制该尺寸且将纵梁定位由原来的外形定位改为侧面定位孔定位.  相似文献   

15.
Nonlinear Dynamics of Vehicle Traction   总被引:3,自引:0,他引:3  
Summary The purpose of this study is to understand the nonlinear dynamics of longitudinal ground vehicle traction. Specifically, single-wheel models of rubber-tired automobiles under straight-ahead braking and acceleration conditions are investigated in detail. Customarily, the forward vehicle speed and the rotational rate of the tire/wheel are taken as dynamic states. This paper motivates an alternative formulation in which wheel slip, a dimensionless measure of the difference between the vehicle speed and the circumferential speed of the tire relative to the wheel center, replaces the angular velocity of the tire/wheel as a dynamic state. This formulation offers new insight into the dynamic behavior of vehicle traction. The unique features of the modeling approach allow one to capture the full range of dynamic responses of the single-wheel traction models in a relatively simple geometric manner. The models developed here may also be useful for developing and implementing anti-lock brake and traction control control schemes.  相似文献   

16.
Some railway problems, such as the corrugation of rails or the impact caused by a wheelflat, are associated with a vehicle–track coupled dynamic phenomenon. Models for the analysis of these problems must account for the structural vibrations of the track components (rails and sleepers), but the most adequate approach for the wheelset has not been sufficiently investigated until present. The wheelset can be considered as an undeformable solid, as an elastic structure where the rotation effects are neglected, or as a rotating flexible solid. In order to fill this gap, this article presents a methodology to use the structural vibrations of a rotating wheelset in high-frequency railway dynamics analyses. The model makes use of Eulerian modal coordinates, a formulation that provides very low computational cost. The method is applied in this article to a wheelflat impact calculation and a vehicle running on a corrugated track. The results show the importance of the more realistic model in the simulations, mainly in certain frequencies.  相似文献   

17.
Summary The purpose of this study is to understand the nonlinear dynamics of longitudinal ground vehicle traction. Specifically, single-wheel models of rubber-tired automobiles under straight-ahead braking and acceleration conditions are investigated in detail. Customarily, the forward vehicle speed and the rotational rate of the tire/wheel are taken as dynamic states. This paper motivates an alternative formulation in which wheel slip, a dimensionless measure of the difference between the vehicle speed and the circumferential speed of the tire relative to the wheel center, replaces the angular velocity of the tire/wheel as a dynamic state. This formulation offers new insight into the dynamic behavior of vehicle traction. The unique features of the modeling approach allow one to capture the full range of dynamic responses of the single-wheel traction models in a relatively simple geometric manner. The models developed here may also be useful for developing and implementing anti-lock brake and traction control control schemes.  相似文献   

18.
For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train–track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle–track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train–track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel–rail relation and the line geometries. And for the calculation of the wheel–rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel–rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train–track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.  相似文献   

19.
Prediction of Wheel/Rail Profile Wear   总被引:3,自引:0,他引:3  
The alteration in wheel and rail profiles due to wear involves considerable vehicle and track-maintenance costs, and influences the loading capacity of the rails, as well as the operation safety and riding comfort of the vehicles. In the past twenty years a vehicle dynamics, contact mechanics and tribology based research work has emerged which is also recently continuous in an international scale, and this research is more and more intensive. Parallel to the growing possibilities of computer based analyses, several algorithms and numerical procedures have been elaborated, as well as measurement based experiments have been carried out to establish the reliable prediction of wear-caused wheel and rail profile alterations and to maximise the mileage performance by selecting the optimum vehicle system parameters for running gears operating on a selected railway line or a whole network under specified -in general inherently stochastic - traffic conditions. This paper takes an attempt to introduce the extended sphere of problems of wheel and rail wear prediction, as well as the latest results reflecting the present state of the art.  相似文献   

20.
This paper presents a survey of the state-of-the-art in predicting the wheel vibrations in a complex dynamic vehicle suspension system and their influence on the forces transduced in a high frequency area from the tire to the vehicle's body. Secondly it presents also the transient evolution of tire models used for prediction and understanding high frequency movements in the tire's contact area, producing the guiding forces and torques during vehicle handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号