首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies the structural response of a 6.0” flexible pipe under pure tension considering intact and damaged conditions. In the damaged condition, several wires of the tensile armor layers are assumed to be broken. A three-dimensional nonlinear finite element (FE) model devoted to analyze the local mechanical response of flexible pipes is employed in this study. This model is capable of representing each tensile armor wire and, therefore, localized defects, including total rupture, may be adequately represented. Results from experimental tests validate the FE predictions and indicate a reduction in the axial stiffness of the pipe, a non-uniform redistribution of forces among the remaining intact wires of the damaged tensile armor layers and high stress concentrations in the wires near the broken ones. Moreover, the FE model indicates that significant normal bending stresses may arise in the pressure armor and inner carcass due to an uneven pressure distribution on these layers. Finally, the results obtained are employed to estimate the pull out capacity of the studied flexible pipe.  相似文献   

2.
A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment–curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.  相似文献   

3.
Friction and wear behavior between armor wire layers of umbilical plays an important role in its mechanical properties, in particular its fatigue life. The present paper addresses friction tests to investigate the interlayer sliding friction and wear mechanism of armor wires in an umbilical. A series of friction tests were carried out to study the evolution of coefficient of friction (COF) and wear between armor wire layers. The results show that the COF increases with increasing number of reciprocating sliding cycles in dry friction condition. A dual stable trend was found in the evolution process of interlayer friction and wear of armor wires. A friction model was proposed to describe this trend by dividing the evolution process into three stages: the initial stable stage, the transition stage, and the latter stable stage. The mechanism of the dual stable trend was revealed, which was mainly caused by wear process of nylon fiber tape, and effected by dry/wet wear condition and wear coefficient. The effect of the contact condition, sliding amplitude and number of nylon fiber tape on COF was studied. The COF of the latter stable stage increases with increasing sliding amplitude and number of layers of nylon fiber tape. The finding in this paper provides a valuable approach for a more accurate fatigue life prediction of an umbilical.  相似文献   

4.
Flexible risers have been widely utilized for the transfer of oil and gas products from a well to production units. The components of flexible risers, unlike steel risers, experience complex contact phenomena during bending. The contact between helical wires and adjacent layers especially causes a significant level of bending nonlinearity, making it hard to estimate the structural responses. Accordingly, a large-scale dynamic analysis of flexible risers usually involves an analytical model that predicts the bending moment and axial stress of helical wires based on theoretical approaches. The analytical model consists of an axis-symmetrical model and a bending model. Among them, the bending model plays a critical role in the prediction of the bending responses of flexible risers. The conventional bending models usually neglect the shear deformation of internal layers and continuity of sliding force, which leads to a significant error of analysis. Furthermore, the previous bending models assume that the contact pressure on helical wires is constant during bending. In real operating conditions, however, most flexible risers experience a considerable change of tension that governs the slip of helical wires. Hence, the current study presents a new dynamic analysis method for flexible risers. The suggested analytical model improves the bending model based on an accurate estimation of the internal strain field considering the shear deformation and continuous sliding force. Also, this study proposes a stiffness update method to reflect the effect of varying tension in the dynamic analysis. The presented method updates the bending property of flexible risers considering the continuous change of the contact pressure from varying tension. For the validation of suggested method, the current study carries out numerical simulations with a pure bending and varying tension for the internal diameter 7 inches flexible risers. It is identified that the suggested analytical model provides accurate analysis results. Moreover, it is found that the effect of varying tension gives a significant impact on the bending behavior of flexible risers by changing the slip condition of helical wires. Part I of this series of papers describes the detailed formulation method for the analytical model and with some verification examples. The suggested analytical model is expanded to the large-scale dynamic analysis in Part II for the investigation of the effect of shear deformation and varying tension.  相似文献   

5.
In recent years, the dynamic responses of flexible risers have been the focus of many researchers. Most flexible risers undergo a substantial level of irregular motion from environmental loadings, which involves a continuous slip of helical wires. The slip of helical wires especially leads to a hysteretic effect by reducing the bending stiffness, making it hard to predict the dynamic responses of flexible risers. The current study, as an extension to Part I, presents a new large-scale dynamic analysis method for flexible risers. The suggested method creates a large-scale model for the dynamic analysis that considers a geometric and bending nonlinearity of flexible risers. The kinematics of each beam element is formulated based on a Green-Lagrangian strain and the interaction with the seabed, providing a realistic analysis of flexible risers. In particular, the current study introduces a direct moment correction method that modifies the internal force vector using an improved analytical model. The improved analytical model is assigned at each node of the large-scale model and estimates an accurate bending hysteresis curve considering the effect of shear deformation and varying tension. The suggested method corrects the bending moment and shear force of all beam elements based on the bending hysteresis curves obtained from the improved analytical model, by which a complex bending behavior of flexible risers is reflected in a large-scale domain. As a result, this study achieves a more accurate prediction of the dynamic responses and fatigue damage of flexible risers. A new dynamic analysis program, called OPFLEX, is developed herein based on the suggested analysis method. Using the developed program, the current study conducts several numerical investigations to identify the effect of the shear deformation and varying tension. Consequently, it is confirmed that the shear deformation of internal layers reduces the fatigue damage of helical wires by delaying the increase of internal stress. It is also identified that the effect of varying tension deteriorates the fatigue life of flexible risers through a continuous change of contact pressure during bending.  相似文献   

6.
The constructive disposition of metallic and plastic layers confers flexible pipes with high and low axial stiffness respectively when tensile and compressive loads are applied. Under certain conditions typically found during deepwater installation or operation, flexible pipes may be subjected to high axial compression, sometimes accompanied by bending. If not properly designed, the structure may not be able to withstand this loading and fails. From practical experience observed offshore and in laboratory tests two principal mechanisms, which will be discussed in this paper, have been identified regarding the configuration of the armor wires. When the pipe fails by compression the armor wires may exhibit localized lateral or radial deflections, consequently permanent damage is observed in the armor wires with a sudden reduction of the structure’s axial stiffness. The pressure armor may also unlock, thus causing potential fluid leakage.In this work a finite element model is developed to estimate the critical instability load and failure modes. An axi-symmetric model is constructed employing a complex combination of beam and spring elements. For each armor layer only one wire needs to be modeled, hence the computational cost is minimized without compromising the phenomenon characterization. A parametric case study is performed for a typical flexible pipe structure, where the friction coefficient between the wire armors and the external pressure are varied, and the critical instability loads and failure modes are obtained and results are discussed.  相似文献   

7.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.  相似文献   

8.
A fracture mechanics (FM) based investigation on the mechanism of out-of-plane bending (OPB) between mooring chain links and its effects on fatigue lives of mooring chain links are conducted. Four types of OPB problems that mooring chain links laying on the chain wheel, chain links passing over the bending shoe, chain links constraint provided by the chain hawse, and chain links constraint provided by the chain stopper are considered. Tension ranges of mooring lines are calculated based on the combined loading process induced by the motions of wave frequency (WF) and low frequency (LF). Initial cracks are assumed to propagate from surfaces of chain links and stress intensity factors are calculated in terms of stress ranges determined by a finite element (FE) analysis. The results show that fatigue lives of mooring chain links are decreased significantly due to OPB effects. In addition, the increase of the number of pockets of chain wheel mitigates OPB effects on fatigue lives of mooring chain links laying on the chain wheel, and the increase of the track diameter would reduce OPB effects on fatigue lives of mooring chain links passing over the bending shoe as well. However, for chain links constraint provided by the chain hawse, the diameter of mooring chain hawse has no significant effect on fatigue lives of the mooring chain links subject to OPB if without the abrupt change of the contact conditions between chain links and chain hawse. For mooring links constraint provided by chain stoppers considering the effect of proof loading test, fatigue lives of mooring chain links would drop significantly with the increase of interlink angles and friction coefficient.  相似文献   

9.
An analytical model is given to investigate the behavior of unbonded flexible pipes under biaxial dynamic bending. The stick-slip conditions of each wire are studied in the framework of incremental analysis by an operator splitting of the time step into a stick-state prediction and a slip-state correction step. The tension gradient is calculated using the classical return-mapping algorithm and the obtained tension gradients are integrated numerically to find the axial tension by imposing appropriate boundary conditions. From the axial tension the bending moments with respect to the principal bending axes of the pipe are obtained. Poisson's effect, bending induced tension in the wire, shear deformations of the supporting plastic layer and the changes of the effective torsion and curvature increments of the wire after slip occurs are taken into account in the model. The results of bending moment–curvature relationship from this model are compared with the test data from simple bending and good correlations are found. The comparison of the biaxial bending moment results between this model and the available model also shows good agreement.  相似文献   

10.
The present paper addresses the circular armour wire lateral buckling in umbilicals. An asymmetric non-linear finite element model is developed to analyze a single armour wire subjected to combined constant axial compression and uniform cyclic curvatures. A parametric case study is performed for an armour wire from a nine-hose umbilical cable, where the armour wire pitch number, applied axial compressive load and minimum and maximum curvatures in the applied cyclic bending are varied. The armour wire end shortenings, transverse sliding in cyclic bending, the buckling shapes and equilibrium paths after numerous bending cycles, the critical buckling loads, the stress states at the onset of lateral buckling, and the required number of bending cycles that triggers lateral buckling are obtained and extensively discussed. The critical buckling loads given by the FE model have been compared with an existing analytical formulation, indicating that the analytical model is reliable for small cyclic curvatures. Moreover, an empirical model is proposed for the required number of bending cycles to trigger the lateral buckling and good correlation with the FE results has been observed.  相似文献   

11.
Stress concentration factors (SCFs) in steel tubular T/Y-connections strengthened with fiber reinforced polymer (FRP) are investigated. In the first step, a finite element (FE) model was developed and verified using data of several available experimental tests and empirical formulas. After that, 134 FE models of T/Y-joints with and without FRP were created and analyzed under in-plane bending (IPB) load. In the FE models, the contact between the FRP layers and the members (chord, brace, and weld) was defined. Results showed that the increase of the FRP layer number leads to the notable decrease of the SCFs. Also, the SCFs of a T/Y-joint reinforced with FRP can be down to 40% of the SCF of the corresponding unreinforced joint. Finally, FE results were used to propose two parametric formulas for determining the SCFs in the T/Y-joints strengthened with FRP subjected to IPB load. The proposed formulas were checked according to the UK Department of Energy acceptance criteria.  相似文献   

12.
王滨  眭锁炳 《船舶工程》2016,38(10):76-79
钢丝绳的使用寿命是钢丝绳行业内重点关注和研究的核心问题。而在钢丝绳-滑轮系统中,钢丝绳失效的主要型式是弯曲疲劳损伤。本文针对钢丝绳的简单弯曲、角度弯曲和反向弯曲等三种典型弯曲类型特点,专门设计了五滑轮弯曲疲劳试验台。通过调整钢丝绳工作行程和试验载荷,旨在研究钢丝绳在简单弯曲、角度弯曲和反向弯曲中的疲劳寿命。提出了反向弯曲相对简单弯曲的折算方法和折算系数,得出钢丝绳简单弯曲的总寿命次数与载荷的相关函数,为钢丝绳在特定条件下的使用寿命预测提供了试验数据支撑和计算方法。  相似文献   

13.
崔影 《港口装卸》2014,(1):30-32
钢丝绳使用过程中受到交变应力的作用,内部相邻钢丝因受力不均匀导致变形不同步时将发生微动;微动使钢丝表面产生磨损,从而使钢丝横截面积减小致应力集中的发生,促进疲劳微裂纹的萌生,微动疲劳是钢丝绳失效的主要原因。磷化涂层钢丝绳专利技术是将制绳钢丝磷化处理后捻制股及钢丝绳,磷化膜使钢丝表面更加耐磨,同时增加润滑脂在钢丝表面的驻留量,减小摩擦力促进滑动,抑制钢丝表面损伤及微动疲劳的发生,从而大幅度延长钢丝绳使用寿命。  相似文献   

14.
钢丝绳失效机理分析及改进举措   总被引:1,自引:0,他引:1  
微动疲劳与腐蚀疲劳是造成钢丝绳失效的主要原因。选用纯净度高的帘线钢盘条为原料制造钢丝绳,并对制绳钢丝进行表面处理,提高钢丝的防腐蚀、耐磨损性能,同时通过改进设备和工艺提高捻制质量,可大幅度地提高钢丝绳的质量和使用寿命。光面钢丝绳或将被淘汰。  相似文献   

15.
根据简支梁桥上CRTS Ⅱ型板式轨道的结构特点,运用有限元软件建立了墩台挠曲力的计算模型,分析了底座与桥梁间的滑动层摩擦系数、墩台水平线刚度、扣件纵向阻力和轨道板、底座刚度折减系数对墩台挠曲力的影响。计算结果表明,墩台挠曲力随墩台水平线刚度的增大而增大,基本成线形关系;滑动层摩擦系数、刚度折减系数对墩台挠曲力有较大影响,而扣件纵向阻力的影响可忽略不计。  相似文献   

16.
This paper presents a novel strategy based on the finite element method for prediction of fishing gear interference loads on subsea pipelines. Trawl board pull-over interaction is addressed with emphasis on hydrodynamic load representation, handling of pipe-trawl contact and modeling of the trawl gear system. A validation study involving 34 model test runs was carried out for three trawl boards with variation of pipe span height, towing velocity, towing line stiffness and pipe support conditions. The simulated bias of the load impulse was found to be within a 10% margin of the model test measurements. Based on the validated numerical model a sensitivity analysis involving nearly 250 simulations was conducted. The interaction behavior was seen to be greatly influenced by the board-pipe friction coefficient, the tension level in the wire between board and trawl net, the towing line drag properties and the direction of over-trawling.  相似文献   

17.
Rigorous analytical formulations are given to describe the gross slip initiation and progression in tensile armor layers of unbonded flexible pipes. Then two mechanisms are thought to contribute to the decrease of layer stiffness before gross slip begins. The first one considers the micro-slip occurred at the interlayer contact interfaces. The relative displacement between an armor wire and the underlying layer is determined according to the theory of contact mechanics. Shear deformations of the supporting plastic layer are taken into account in the other mechanism where plane sections no longer remain plane. The results of bending moment-curvature relationship from the presented models are compared with the available test data and good correlations are found. The shear model is seen to describe the slip transition better than other models do.  相似文献   

18.
双体船结构的直接计算分析   总被引:3,自引:1,他引:2  
应用大型通用有限元分析软件ANSYS,整体计算一艘船长超过60 m的内河双体船,对计算模型的建立、加载方式、边界条件等进行了讨论,分析了在不同工况下船体构件的受力情况,并着重分析连接桥部位的应力分布。  相似文献   

19.
An extensive parametric study using detailed nonlinear finite element (FE) models, was conducted in order to develop a design equation for predicting Strain Concentration Factor (SCF) in field joints of X65 concrete coated pipelines under bending. Dimensions of the pipeline and coating, material properties of the coating and anti corrosion layer, as well as the loading level, were included in the design equation. Buckingham's theorem was incorporated to simplify the equation by introducing non-dimensionalized parameters. The design equation was fitted to FE data using the nonlinear least square regression, while additionally, margins of safety were defined using the confidence interval concept for practical applications. The interactive effect of parameters on SCF was studied, leading to the introduction of a single non-dimensional “coating parameter” that can accurately describe the upper limit of the SCF. This study concluded with a definition of a critical “coating parameter” which can be used to assess safe combinations of coating thickness and installation loads, thus preventing excessive strain concentration.  相似文献   

20.
集装箱船整船结构三维有限元强度分析方法研究   总被引:7,自引:0,他引:7  
以3800TEU集装箱为例,用二维切片理论进行了波浪长期预报,并在此基础上导出等效波组,在整船结构有限元模型上计算船体结构在各等效波上的变形和应力分布。文中叙述的整船结构有限元分析方法,也可以用于其他类型船的整船结构分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号