首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integrated modeling of land use and transportation choices involves analyzing a continuum of choices that characterize people’s lifestyles across temporal scales. This includes long-term choices such as residential and work location choices that affect land-use, medium-term choices such as vehicle ownership, and short-term choices such as travel mode choice that affect travel demand. Prior research in this area has been limited by the complexities associated with the development of integrated model systems that combine the long-, medium- and short-term choices into a unified analytical framework. This paper presents an integrated simultaneous multi-dimensional choice model of residential location, auto ownership, bicycle ownership, and commute tour mode choices using a mixed multidimensional choice modeling methodology. Model estimation results using the San Francisco Bay Area highlight a series of interdependencies among the multi-dimensional choice processes. The interdependencies include: (1) self-selection effects due to observed and unobserved factors, where households locate based on lifestyle and mobility preferences, (2) endogeneity effects, where any one choice dimension is not exogenous to another, but is endogenous to the system as a whole, (3) correlated error structures, where common unobserved factors significantly and simultaneously impact multiple choice dimensions, and (4) unobserved heterogeneity, where decision-makers show significant variation in sensitivity to explanatory variables due to unobserved factors. From a policy standpoint, to be able to forecast the “true” causal influence of activity-travel environment changes on residential location, auto/bicycle ownership, and commute mode choices, it is necessary to capture the above-identified interdependencies by jointly modeling the multiple choice dimensions in an integrated framework.  相似文献   

2.
A large number of studies have investigated the association between the built environment and travel behavior. However, most studies did not explicitly quantify the contribution of residential self-selection to the connection. Using the 2006 data collected from a regional travel diary in Raleigh, NC, this study applies propensity score matching to explore the effects of the regional location of individuals’ residences on their vehicle miles driven. We found that residential location plays a more important role in affecting driving behavior than residential self-selection; and that the self-selection effect is non-trivial when we compare driving behavior between urban residents and people living in other areas. Therefore, for such comparisons, the observed influence of residential locations on driving should be appropriately discounted when we evaluate the causal impacts of the built environment on travel behavior.  相似文献   

3.
Wang  Donggen  Lin  Tao 《Transportation》2019,46(1):51-74

The influence of the built environment on travel behavior has been the subject of considerable research attention in recent decades. Scholars have debated the role of residential self-selection in explaining the associations between the built environment and travel behavior. The purpose of this study is to make a contribution to the literature by adopting the cross-lagged panel modeling approach to analyze a panel data, which scholars have recommended as the ideal design for studying the influence of the built environment on travel behavior accounting for the residential self-selection. To that objective, we collected activity-travel diary data from a sample of 229 households in Beijing before and after they moved from one residential location to another. We developed a two-wave structural equation model linking the residential built environment to travel behavior and taking into consideration travel-related attitudes before and after residential change. The modeling results show that individuals’ travel attitudes may change after a home relocation. We found no evidence of residential self-selection, but significant influence of the built environment on travel preference. Nevertheless, the direct influence of travel preference on travel behavior seems to be stronger than that of the built environment. As one of the very few studies to use panel data, this research presents new insights into the relationship between the built environment and travel behavior and the role of residential self-selection.

  相似文献   

4.
The role of residential self-selection has become a major subject in the debate over the relationships between the built environment and travel behavior. Numerous previous empirical studies on this subject have provided valuable insights into the associations between the built environment and travel behavior. However, the vast majority of the studies were conducted in North American and European cities; yet this research is still in its infancy in most developing countries, including China, where residential and transport choices are likely to be more constrained and travel-related attitudes quite different from those in the developed world. Using the data collected from 2038 residents currently living in TOD neighborhoods and non-TOD neighborhoods in Shanghai City, this paper aims to partly fill the gaps by investigating the causal relationship between the built environment and travel behavior in the Chinese context. More specifically, this paper employs Heckman’s sample selection model to examine the reduction impacts of TOD on personal vehicle kilometers traveled (VKT), controlling for self-selection. The results show that whilst the effects of residential self-selection are apparent; the built environment exhibits the most significant impacts on travel behavior, playing the dominant role. These findings produce a sound basis for local policymakers to better understand the nature and magnitude toward the impacts of the built environment on travel behavior. Providing the government department with reassurance that effective interventions and policies on land use aimed toward altering the built environment would actually lead to meaningful changes in travel behavior.  相似文献   

5.
Many studies have found that residents living in suburban neighborhoods drive more and walk less than their counterparts in traditional neighborhoods. This evidence supports the advocacy of smart growth strategies to alter individuals’ travel behavior. However, the observed differences in travel behavior may be more of a residential choice than a travel choice. Applying the seemingly unrelated regression approach to a sample from Northern California, we explored the relationship between the residential environment and nonwork travel frequencies by auto, transit, and walk/bicycle modes, controlling for residential self-selection. We found that residential preferences and travel attitudes (self-selection) significantly influenced tripmaking by all three modes, and also that neighborhood characteristics (the built environment and its perception) retained a separate influence on behavior after controlling for self-selection. Both preferences/attitudes and the built environment itself played a more prominent role in explaining the variation in non-motorized travel than for auto and transit travel. Taken together, our results suggest that if cities use land use policies to offer options to drive less and use transit and non-motorized modes more, many residents will tend to do so.  相似文献   

6.
Pedestrian travel offers a wide range of benefits to both individuals and society. Planners and public health officials alike have been promoting policies that improve the quality of the built environment for pedestrians: mixed land uses, interconnected street networks, sidewalks and other facilities. Whether such policies will prove effective remains open to debate. Two issues in particular need further attention. First, the impact of the built environment on pedestrian behavior may depend on the purpose of the trip, whether for utilitarian or recreational purposes. Second, the connection between the built environment and pedestrian behavior may be more a matter of residential location choice than of travel choice. This study aims to provide new evidence on both questions. Using 1368 respondents to a 1995 survey conducted in six neighborhoods in Austin, TX, two separate negative binomial models were estimated for the frequencies of strolling trips and pedestrian shopping trips within neighborhoods. We found that although residential self-selection impacts both types of trips, it is the most important factor explaining walking to a destination (i.e. for shopping). After accounting for self-selection, neighborhood characteristics (especially perceptions of these characteristics) impact strolling frequency, while characteristics of local commercial areas are important in facilitating shopping trips.  相似文献   

7.
This paper aims to explore the impact of built environment attributes in the scale of one quarter-mile buffers on individuals’ travel behaviors in the metropolitan of Shiraz, Iran. In order to develop this topic, the present research is developed through the analysis of a dataset collected from residents of 22 neighborhoods with variety of land use features. Using household survey on daily activities, this study investigates home-based work and non-work (HBW and HBN) trips. Structural equation models are utilized to examine the relationships between land use attributes and travel behavior while taking into account socio-economic characteristics as the residential self-selection. Results from models indicate that individuals residing in areas with high residential and job density, and shorter distance to sub-centers are more interested in using transit and non-motorized modes. Moreover, residents of neighborhoods with mixed land uses tend to travel less by car and more by transit and non-motorized modes to non-work destinations. Nevertheless, the influences of design measurements such as street density and internal connectivity are mixed in our models. Although higher internal connectivity leads to more transit and non-motorized trips in HBW model, the impacts of design measurements on individuals travel behavior in HBN model are significantly in contrast with research hypothesis. Our study also shows the importance of individuals’ self-selection impacts on travel behaviors; individuals with special socio-demographic attributes live in the neighborhoods with regard to their transportation patterns. The findings of this paper reveal that the effects of built environment attributes on travel behavior in origins of trips do not exactly correspond with the expected predictions, when it comes in practice in a various study context. This study displays the necessity of regarding local conditions of urban areas and the inherent differences between travel destinations in integrating land use and transportation planning.  相似文献   

8.
In this paper, a joint multinomial logit (MNL) model of residential location and vehicle availability choice is formulated and estimated using a sample of households from the San Francisco, CA area Metropolitan Transportation Commission's 1990 household travel survey. Subsequently, models of travel intensity (number of daily household trips and vehicle-miles traveled) are estimated as a function of household characteristics and of attributes derived from the joint residential location and auto availability choice model (number of vehicles, percent land developed). A policy test shows that reducing the cost of locating in the densest areas of the metropolitan area is likely to have only marginal impact on vehicle availability and household trip making.  相似文献   

9.
Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession years in the United States and has reached record levels in 2017. With transportation accounting for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although there is considerable understanding of the various factors that influence household vehicular travel, there is little knowledge of their relative contribution to explaining variance in household VMT. This paper presents a holistic analysis to identify the relative contribution of socio-economic and demographic characteristics, built environment attributes, residential self-selection effects, and social and spatial dependency effects in explaining household VMT production. The modeling framework employs a simultaneous equations model of residential location (density) choice and household VMT generation. The analysis is performed using household travel survey data from the New York metropolitan region. Model results showed insignificant spatial dependency effects, with socio-demographic variables explaining 33 percent, density (as a key measure of built environment attributes) explaining 12 percent, and self-selection effects explaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44 percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic factors, calling for further research in this domain to better understand the relative contribution of various drivers of household VMT.  相似文献   

10.
Numerous studies have established the link between the built environment and travel behavior. However, fewer studies have focused on environmental costs of travel (such as CO2 emissions) with respect to residential self-selection. Combined with the application of TIQS (Travel Intelligent Query System), this study develops a structural equations model (SEM) to examine the effects of the built environment and residential self-selection on commuting trips and their related CO2 emissions using data from 2015 in Guangzhou, China. The results demonstrate that the effect of residential self-selection also exists in Chinese cities, influencing residents’ choice of living environments and ultimately affecting their commute trip CO2 emissions. After controlling for the effect of residential self-selection, built environment variables still have significant effects on CO2 emissions from commuting although some are indirect effects that work through mediating variables (car ownership and commuting trip distance). Specifically, CO2 emissions are negatively affected by land-use mix, residential density, metro station density and road network density. Conversely, bus stop density, distance to city centers and parking availability near the workplace have positive effects on CO2 emissions. To promote low carbon travel, intervention on the built environment would be effective and necessary.  相似文献   

11.
This paper introduces a vehicle transaction timing model which is conditional on household residential and job relocation timings. Further, the household residential location and members’ job relocation timing decisions are jointly estimated. Some researchers have modeled the household vehicle ownership decision jointly with other household decisions like vehicle type choice or VMT; however, these models were basically static and changes in household taste over time has been ignored in nearly all of these models. The proposed model is a dynamic joint model in which the effects of land-use, economy and disaggregate travel activity attributes on the major household decisions; residential location and members’ job relocation timing decisions for wife and husband of the household, are estimated. Each of these models is estimated using both the Weibull and log-logistic baseline hazard functions to assess the usefulness of a non-monotonic rather than monotonic baseline hazard function. The last three waves of the Puget Sound Panel Survey data and land-use, transportation, and built environment variables from the Seattle Metropolitan Area are used in this study as these waves include useful explanatory variables like household tenure that were not included in the previous waves.  相似文献   

12.
Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor—if any—influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.  相似文献   

13.
Xinyu ?Cao 《Transportation》2009,36(2):207-222
The causality issue has become one of the key questions in the debate over the relationships between the built environment and travel behavior. Although previous studies have tested statistical and/or practical significance of the built environment on travel behavior, few have quantified the relative roles of the built environment and residential self-selection in influencing travel behavior. Using 1,479 residents living in four traditional and four suburban neighborhoods in Northern California, this study explores the causal effect of neighborhood type on driving behavior and its relative contribution to the total influence of neighborhood type. Specifically, this study applied Heckman’s sample selection model to separate the effect of the built environment itself and the effect of self-selection. The results showed that, on average, the effect of neighborhood type itself on driving distance was 25.8 miles per week, which accounted for more than three quarters of the total influence of neighborhood type and 16% of individuals’ overall vehicle miles driven. These results suggest that the effect of the built environment on driving behavior outweighs that of self-selection. This paper also discussed the advantages and weaknesses of applying the Heckman’s model to address the self-selection issue.
Xinyu (Jason) CaoEmail:
  相似文献   

14.
Suburban sprawl has been widely criticized for its contribution to auto dependence. Numerous studies have found that residents in suburban neighborhoods drive more and walk less than their counterparts in traditional environments. However, most studies confirm only an association between the built environment and travel behavior, and have yet to establish the predominant underlying causal link: whether neighborhood design independently influences travel behavior or whether preferences for travel options affect residential choice. That is, residential self-selection may be at work. A few studies have recently addressed the influence of self-selection. However, our understanding of the causality issue is still immature. To address this issue, this study took into account individuals’ self-selection by employing a quasi-longitudinal design and by controlling for residential preferences and travel attitudes. In particular, using data collected from 547 movers currently living in four traditional neighborhoods and four suburban neighborhoods in Northern California, we developed a structural equations model to investigate the relationships among changes in the built environment, changes in auto ownership, and changes in travel behavior. The results provide some encouragement that land-use policies designed to put residents closer to destinations and provide them with alternative transportation options will actually lead to less driving and more walking.
Susan L. HandyEmail:

Xinyu (Jason) Cao   is a research fellow in the Upper Great Plains Transportation Institute at North Dakota State University. His research interests include the influences of land use on travel and physical activity, and transportation planning. Patricia L. Mokhtarian   is a professor of Civil and Environmental Engineering, Chair of the interdisciplinary Transportation Technology and Policy graduate program, and Associate Director for Education of the Institute of Transportation Studies at the University of California, Davis. She specializes in the study of travel behavior. Susan L. Handy   is a professor in the Department of Environmental Science and Policy and Director of the Sustainable Transportation Center at the University of California, Davis. Her research interests center around the relationships between transportation and land use, particularly the impact of neighborhood design on travel behavior.  相似文献   

15.
Understanding travel behavior and its relationship to urban form is vital for the sustainable planning strategies aimed at automobile dependency reduction. The objective of this study is twofold. First, this research provides additional insights to examine the effects of built environment factors measured at both home location and workplace on tour-based mode choice behavior. Second, a cross-classified multilevel probit model using Bayesian approach is employed to accommodate the spatial context in which individuals make travel decisions. Using Washington, D.C. as our study area, the home-based work (Home-work) tour in the AM peak hours is used as the analysis unit. The empirical data was gathered from the Washington-Baltimore Regional Household Travel Survey 2007–2008. For parameter estimation, Bayesian estimation method integrating Markov Chain Monte Carlo (MCMC) sampling is adopted. Our findings confirmed the important role that the built environment at both home location and work ends plays in affecting commuter mode choice behavior. Meanwhile, a comparison of different model results shows that the cross-classified multilevel probit model offers significant improvements over the traditional probit model. The results are expected to give a better understanding on the relationship between the built environment and commuter mode choice behavior.  相似文献   

16.
This paper presents an examination of the significance of residential sorting or self selection effects in understanding the impacts of the built environment on travel choices. Land use and transportation system attributes are often treated as exogenous variables in models of travel behavior. Such models ignore the potential self selection processes that may be at play wherein households and individuals choose to locate in areas or built environments that are consistent with their lifestyle and transportation preferences, attitudes, and values. In this paper, a simultaneous model of residential location choice and commute mode choice that accounts for both observed and unobserved taste variations that may contribute to residential self selection is estimated on a survey sample extracted from the 2000 San Francisco Bay Area household travel survey. Model results show that both observed and unobserved residential self selection effects do exist; however, even after accounting for these effects, it is found that built environment attributes can indeed significantly impact commute mode choice behavior. The paper concludes with a discussion of the implications of the model findings for policy planning.
Paul A. WaddellEmail:
  相似文献   

17.
Metropolitan areas around the world are looking for sustainable strategies to reduce use of private automobiles, energy consumption and emissions, often achieved by built environment interventions that encourage use of sustainable modes of transport. This study contributes by providing the empirical evidence on the relation between built environment and mode choice in context of Indian city of Rajkot. Using personal interview data and data available from Rajkot Municipal Corporation it is observed that there is a strong tendency among Rajkot residents to preselect their residential location to suit their modal preferences. This is especially true for non-motorized transport users. Among the built environment variables, access to destination and land use related indicators also have significant influence on mode choice. The study Infers that the land use policy should focus on accessibility and mixing of diverse uses, and transport supply will have to be location based to support non-motorized and public transport travel.  相似文献   

18.
Assessing the impact of characteristics of the built environment on travel behavior can yield valuable tools for land use and transportation planning. Of particular interest are planning models that can estimate the effects of ‘smart growth’ planning. In this paper, a post-processor method of quantifying and searching for relationships among many aspects of travel behavior and the built environment is developed and applied to the Buffalo, NY area. A wide scope of travel behavior is examined, and over 50 variables, many of which are based on high-detail data sources, are examined for potentially quantifying the built environment. Linear modeling is then used to relate travel behavior and the built environment, and the resulting models may be applied in a post-processor fashion to travel models to provide some measure of sensitivity to built environment modifications. The study’s findings demonstrate that mode choice is highly correlated to measures of the built environment, and that many of the principles of smart growth appear to be a valid way to encourage non-vehicle travel. Home-based VHT and VMT appear to be affected by the built environment to a lesser degree.  相似文献   

19.
This paper addresses the relations between travel behavior and land use patterns using a Structural Equations Modeling (SEM) framework. The proposed model structure draws on two earlier models developed for Lisbon and Seattle which show significant effects of land use patterns on travel behavior. The travel behavior variables included here are multifaceted including commuting distance, car ownership, the amount of mobility by mode (car, transit and non-motorized modes), both in terms of total kilometers travelled and number of trips. The model also includes a travel scheduling variable, which is the total time spent between the first and last trips to reflect daily constraints in time allocation and travel.The modeled land use variables measure the levels of urban concentration and density, diversity, both in terms of types of uses and the mix between jobs and inhabitants/residents, the transport supply levels, transit and road infrastructure, and accessibility indicators. The land use patterns are described both at the residence and employment zones of each individual included in the model by using a factor analysis technique as a data reduction and multicollinearity elimination technique. In order to explicitly account for self selection bias the land use variables are explicitly modeled as functions of socioeconomic attributes of individuals and their households.The results obtained show that people with different socioeconomic characteristics tend to work and live in places of substantially different urban environments. But besides these socioeconomic self-selection effects, land use variables significantly affect travel behavior. More precisely the effects of land use are in great part passed thru variables describing long term decisions like commuting distance, and car ownership. These results point to similar conclusions from the models developed for Lisbon and Seattle and thus give weight to the use of land use policies as tools for changing travel behavior.  相似文献   

20.
With vehicle miles of travel increasing at a faster pace than population, one strategy being actively pursued by both state and local governments is compact development. California recently passed legislation that aggressively promotes sustainability by endorsing and rewarding compact development. Likewise, the California Air Resources Board has set a statewide reduction target of 5MMT of greenhouse gas reductions from land use, based largely on achieving compact development patterns. In this paper, we use a multivariate two-part model with instrumental variables, which corrects for residential location self-selection bias. We use a much larger and more geographically representative travel survey on household travel patterns and socio-economic characteristics than represented in previous California studies; this allows us to robustly consider other influences on travel. Our results indicate that, all else equal, a 10% in residential density would reduce VMT by 1.9%. This elasticity is larger than the reported in previous econometric studies for the US, and specifically for California. However, as we show, the magnitude of this impact is still low considering reasonable ranges for policies aimed to increase residential density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号