首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 28 毫秒
1.
为解决钢绞线斜拉索无应力长度缺失带来的施工控制难题,提高大跨度斜拉桥施工控制的高效性,将单根索内钢绞线视为整体,基于无应力状态基本原理,根据拉索张拉前结构状态与拉索目标无应力长度,提出了求解斜拉桥合理施工阶段索力的索长迭代法,并基于北盘江大桥实际施工流程,分别采用索长迭代法和索力控制法进行了正装分析。结果表明:在实际施工流程计算中,索长迭代法可很好地自适应施工工序和临时荷载的改变,通过索长迭代法得到的标高、索力与目标状态的最大差值分别为20. 3 mm、25. 2 kN,状态差值均较小且随着悬臂长度的增加状态差值最终都得以收敛;而采用索力控制时,成桥状态的偏差均较大,与目标线形、索力的最大差值达到了523. 9 mm、380. 7 kN,体现了索长迭代的实用性、优越性  相似文献   

2.
万淑敏 《世界桥梁》2012,40(4):59-63
现代大跨度斜拉桥施工工序繁多、体系转换复杂,在其施工控制中若以索力为控制依据,因施工临时荷载变动、温度变化、混凝土收缩徐变的影响,难以实现多工序并行作业。为此,无应力状态控制法利用相对稳定的无应力索长作为控制量,可避免桥面荷载和其它索力调整对目标索索力的影响,为并行作业提供了条件。基于结构力学的力法方程,分别采用索力控制和索长控制2个过程,分析了荷载移动和调索顺序对结构内力、位移的影响,在理论上论证了该方法应用于并行作业的正确性;并通过实例计算,证明了该方法的可行性与优越性。  相似文献   

3.
李冬  朱巍志  张哲 《桥梁建设》2012,42(4):107-112
为研究双套拱塔斜拉桥施工控制技术,尤其是塔间索及斜拉索的张拉方案合理性及张拉控制方法,以小凌河大桥为背景,采用MIDAS Civil有限元软件建立该桥空间计算模型,进行施工过程的模拟计算,根据计算结果对拉索安装和张拉方案进行了优化。优化后,赋予塔间索初张拉无应力长度,二次调索时调整到成桥状态的无应力长度;斜拉索自内而外安装并张拉,索力小于250kN的斜拉索,调整其初张拉无应力长度使索力满足测量要求,其他斜拉索直接张拉到设计的无应力长度。监控结果表明,采用优化后的索力张拉方法对该类桥梁进行施工控制,整个施工过程中结构安全、受力明确,得到的成桥索力误差小。  相似文献   

4.
为掌握刚性索悬索桥施工过程中桥梁真实的应力和线形状态,针对刚性索悬索桥的主缆在塔上张拉,其索力形成机理为主动受力的特点,研究计入主缆外包钢套筒、吊杆外包钢套筒作用的主缆张拉有限元法,并采用该方法对无应力索长控制法、张拉力控制法、塔顶有效索力控制法和跨中有效索力控制法4种主缆张拉控制应力方法确定的成桥状态进行比较。结果表明:无应力索长法与张拉力控制法的索力差距十分微小、主缆的存余有效索力与常规悬索桥模型的较为接近、成桥状态的变形最小,较利于结合构件安装线形的调整控制成桥线形。经有限元模拟和张拉控制应力修正,对某刚性索悬索桥进行了施工控制,结果表明实桥测试数据与理论计算符合良好。  相似文献   

5.
为确定无背索部分斜拉桥斜拉索的合理张拉施工方案,以溱水路大桥为例,对该桥斜拉索一次张拉和分级三次张拉的施工方案进行研究.应用MIDAS Civil有限元软件建立该桥空间有限元计算模型,采用数值仿真方法研究斜拉索一次张拉和分级三次张拉对该桥结构力学行为的影响,探讨斜拉索分级张拉施工的合理性,并基于影响矩阵法进行成桥索力调整.结果表明:该桥分级三次张拉斜拉索的施工方案较为有利,且施工可行,成桥后可采用影响矩阵法进行索力调整,仅需较少次数索力调整即可达到索力设计目标,可避免反复进行斜拉索张拉调整的繁琐施工工序.  相似文献   

6.
为改善斜拉桥平行钢绞线拉索以索力控制张拉时需多次重复张拉的复杂操作工序,并减少由此产生的累计误差,同时使得张拉完成后每股钢绞线拉力分布更均匀,选择以钢绞线的无应力长度作为控制张拉的对象,设计了以无应力长度控制钢绞线逐根一次张拉到位的施工方案,并对其进行优化。考虑拉索的几何非线性,建立单根钢绞线的几何状态方程,确定其在目标索力下控制张拉的无应力长度;在实际施工中以该无应力长度控制张拉单根钢绞线,运用分阶段局部寻优的数值方法,考虑实际施工误差和塔、梁变形等因素,对实际施工索力与设计目标索力之间存在的误差进行修正,寻求对应实际工况的控制张拉无应力长度,以实现一次张拉到位、张拉完成后每根钢绞线拉力相等且成桥索力也更精确的目的;最后,通过计算机仿真算例模拟实际工况进行验证。结果表明:对给定的设计成桥目标索力,采用无应力长度控制张拉方案可一次张拉到位,考虑施工误差进行优化后控制张拉的无应力长度与对应实际工况的无应力长度相差较小,经过二次优化后,施工张拉索力与设计目标索力的相对误差为0.72%,且张拉完成后每根钢绞线拉力相等,满足施工要求;相关计算程序经固化后嵌入智能千斤顶可用于斜拉索张拉施工。  相似文献   

7.
为解决斜拉索无应力长度缺失带来的施工控制精度问题,实现大跨度钢桁梁斜拉桥施工控制的精细化、高效化,丰富合理施工阶段索力的计算方法,基于斜拉索的无应力长度表达式,根据张拉前的结构实际状态与斜拉索目标无应力长度,提出了求解钢桁梁斜拉桥合理施工阶段索力的索长迭代法,给出了迭代计算流程。基于北盘江大桥设计施工流程,分别采用正装迭代法和索长迭代法进行了正装分析。结果表明:在设计施工流程的计算中,当目标成桥状态及杆件无应力构形相同时,索长迭代与正装迭代得出的二张力基本相同,其最大差值仅为该索索力的0.14%,且两者得到的成桥状态十分接近,均能达到预定的目标成桥状态,其中索长迭代得到的标高、索力与目标状态的最大差值分别为3mm、8.9kN,验证了索长迭代法的可行性。  相似文献   

8.
《公路》2017,(12)
为解决大跨度斜拉桥大范围调索施工工序复杂、施工周期长以及受施工荷载和温度影响较大等问题,基于无应力状态法基本原理提出了以斜拉索无应力长度为控制指标的斜拉桥大范围调索技术,通过珲春大桥大范围调索实例论证了该调索技术基本原理的正确性,得出了相比传统大范围调索技术的优势。研究表明,基于无应力状态法基本原理的大范围调索技术以斜拉索无应力长度为控制指标,可以在任何温度、任何荷载状况下进行斜拉索的张拉或放松;减少了按照传统计算方法需要确定各施工状态斜拉索张拉力的工作量;在保证结构受力安全的前提下可以从任何一根或者几根同时张拉,不必按照特定的张拉顺序逐根张拉,减少了施工工序,节省了施工时间,提高了施工效率。  相似文献   

9.
挂索是斜拉桥施工工艺中极为关键的环节之一,如果施工不慎,就会损伤斜拉索、增长施工工期。本文以灌河大桥为工程背景,简要介绍斜拉索施工全过程以及斜拉索修补,本桥通过计算斜拉索无应力索长和挂索牵引力,提出了短索和长索分别采用"反牵引(先安装斜拉索的塔柱张拉端,后安装斜拉索的桥面固定端,然后张拉塔柱端斜拉索)"与软、硬牵引相结合的技术进行挂索,并巧妙利用了桥面展索和脱空展索相结合的工艺,在斜拉索桥面展索使用塔吊、卷扬相结合的方法,梁端安装采用桥面吊机、卷扬机相结合的方法,提高了斜拉索的安装效率和质量,加大了施工的可操作性和安全性,节约施工成本。  相似文献   

10.
为更精确地指导大跨径斜拉桥的施工过程控制,提出一种以斜拉索无应力索长为变量的整体计算流程及调索方法。调索计算按照先成桥状态、再最大悬臂状态、最后全部施工阶段的顺序,满足调索目标及约束条件,依次确定各状态无应力索长;将主梁线形、塔偏、索力等被调整参数的调整值换算为索长增量,按照先塔偏、再主跨主梁线形、后索力的原则进行迭代;当整体几何形态趋于稳定时,采用被调整量混合参数影响矩阵辅助计算。该方法在武汉青山长江大桥和武穴长江大桥的应用表明:按提出的整体流程进行计算有助于理解结构设计特点、明确施工过程控制重点;调索时先采用换算索长快速接近目标状态,再采用混合参数影响矩阵精确调整,可提高结果精度与迭代效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号