首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On many urban low‐grade or branch roads, especially in medium or small cities in China, bicyclists and motorists commonly share the non‐barrier road surface. Because bicycles are unpredictable and unstable when moving, motorized vehicles must reduce their speed to safely approach and overtake them. In this study, the gradual deceleration process a motorized vehicle undergoes before it passes a bicycle was analyzed. The motorist was assumed to prefer a comfortable deceleration and to select a higher deceleration rate only when the distance to the bicycle was insufficient to reduce the car's speed to the expected value at a comfortable deceleration rate. Cellular automata (CA) simulations were used to reveal the flow characteristics of motorized vehicles reacting to bicycles traveling along the roadside, and the results show that for the general velocities of motorized vehicles and bicycles traveling on urban branch roads, the road capacity for motorized vehicles is not related to the number of bicycles present. However, the average travel time of motorized vehicles is significantly affected by the presence of bicycles when the number of motorized vehicles on the road is small. In addition, motorized vehicles' average travel time is more influenced by disturbances in the flow of motorized vehicles than by bicycles when the number of motorized vehicles on the road is large. Field observations and surveys were used to validate the traffic behaviors and simulation results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The focus of the current research was to evaluate how the individual’s social characteristics and urban infrastructure impacts the usage of Private Motorized Modes (PMM). Based on individual and urban characteristics a multilevel analysis was conducted on the possibility of commuting trip by private motorized modes on the rush time of 78 cities around the world. Also the selected cities were classified through a principal component analysis, and based on the classification the impact of and urban variables on the possibility of commuting trips made by private motorized modes (PCTP) was verified. Results showed a diverse range of variables related to the usage of PMM, as well as the urban structure and railway lengths being an important variable in travel behavior.  相似文献   

3.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

4.
Video monitoring of traffic is a common practice in major cities. The data generated by video monitoring has practical uses such as traffic analysis for city planning. However, the usefulness of video monitoring of traffic is limited unless there is also a reliable way to automatically classify road users. This paper presents an automated method of road users’ classification into vehicles, cyclists, and pedestrians by using their motion cues. In this method, the movement of road users was captured on sequences of video frames. The videos were analysed using a feature-based tracking system, which has returned the tracks of road users. The separate pieces of information gained from these tracks are hereafter called Classifiers. There are nineteen classifiers included in this method. The classifiers’ values were assessed and integrated into a fuzzy membership framework, which in turn required prior configurations to be available. This led to the final classification of road users. The performance of this method demonstrated promising results. An important contribution of this paper is the creation of a robust approach that can integrate different classifiers using fuzzy membership framework. The developed method also uses parametric classifiers, which do not depend on the specific geometry or traffic operation of the intersection. This is a key advantage because it enables transferability and improves the practicality and usefulness of the method.  相似文献   

5.
There has been a growing interest in using surrogate safety measures such as traffic conflicts to analyse road safety from a broader perspective than collision data alone. This growing interest has been aided by recent advances in automated video‐based traffic conflict analysis. The automation enables accurate calculation of various conflict indicators such as time‐to‐collision and post‐encroachment time. These indicators rely on road users getting within specific temporal and spatial proximity from each other and therefore assume that proximity is a surrogate for conflict severity. However, this assumption may not be valid in many driving environments where close interactions between road users are common. The objective of this paper is to investigate the applicability of time proximity conflict indicators for evaluating pedestrian safety in less‐organized traffic environments with a high mix of road users. Several alternative behavioural conflict indicators based on detecting pedestrian evasive actions are recommended to better measure traffic conflicts in such traffic environments. These indicators represent variations in the spatio‐temporal gait parameters (step length, step frequency and walk ratio) immediately before the conflict point. A highly congested shared intersection in Shanghai, China, with frequent pedestrian conflicts is used as a case study. Traffic conflicts are analysed with the use of automated video‐based analysis techniques. The results showed that evasive action‐based indicators have higher potential to identify pedestrian conflicts and measure their severity in high mix less organized traffic environments than time proximity measures such as time‐to‐collision and post‐encroachment time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
All through the twentieth century transportation planning and the implementation of transportation facilities in the developing world was heavily weighted toward motorized transportation (MT), despite the fact that non‐motorized transportation (NMT) constitutes a significant proportion of all trips. However, in the last two decades many researchers and practitioners all across the world have recognized the importance and advantages of NMT, and their investigations and findings have contributed toward identifying, if not mitigating, some of the more glaring problems in these countries. Unfortunately, most of these investigations have been performed in a piece‐meal and disjointed fashion. This paper explores the complex and sometimes poorly understood set of relationships between transportation and its links to a myriad of other factors, such as landuse, sustainability, safety, energy, ethical issues, value of time, telecommunication, environmental justice, and equity. The main objective of this paper is to provide a systemic overview of NMT by describing its multi‐dimensional aspects and to assist developing countries in formulating an “Agenda for Action”.  相似文献   

7.
Abstract

Slow‐moving vehicles, including agricultural vehicles, on arterial highways can cause serious delays to other traffic as well as posing an extra safety risk. This paper elaborates on a small‐scale solution for these problems: the passing bay. It investigates the impacts of a passing bay on the total delay for other motorized vehicles, the number of passing manoeuvres and hindered vehicles, and the mean delay per hindered vehicle. The latter is also considered to be an indicator for traffic safety. The calculations are performed for two characteristic trips with a slow‐moving vehicle. The passing bay is an effective solution to reducing delays on arterial highways when two‐way hourly volumes exceed 600–1000 vehicles. The effects depend on the trip length and speed of the slow‐moving vehicle, and on the passing sight distance limitations of the road. A distance of 2–4?km between the passing bays seems an acceptable compromise between the reduction of delay for other motorized vehicles and the extra discomfort and delay for drivers of slow‐moving vehicles. This result also shows that passing bays are not effective in regions where slow‐moving vehicles mainly make trips shorter than this distance.  相似文献   

8.
This paper proposes a new travel time reliability‐based traffic assignment model to investigate the rain effects on risk‐taking behaviours of different road users in networks with day‐to‐day demand fluctuations and variations in travel time. A generalized link travel time function is used to capture the rain effects on vehicle travel times and road conditions. This function is further incorporated into daily demand variations to investigate those travel time variations arising from demand uncertainty and rain condition. In view of these rain effects, road users' perception errors on travel times and risk‐taking behaviours on path choices are incorporated in the proposed model with the use of a logit‐based stochastic user equilibrium framework. This new model is formulated as a variational inequality problem in terms of path flows. A numerical example is used to illustrate the application of the proposed model for assessment of the rain effects on road networks with uncertainty.  相似文献   

9.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Singapore has experienced rapid growth in car ownership, and private transport accounts for just under half of motorized trips in Singapore. Yet only since 1970 have determined efforts been made to curtail this increase. Simultaneously with this growth, Singapore's land‐use planners had called for the diversion of population growth into outlying residential estates while maintaining the central area's importance as an employment centre. The resulting anticipated concentration of commuter movement suggested a need for controls to restrain car ownership, reduce central‐area congestion and divert road users on to public transport. The policies followed are described. Those against ownership have included heavy road taxes and registration fees, with a system of discounts on the latter to discourage new purchasers except when replacing scrapped cars. Policies against car use include fuel taxes and the Area Licensing Scheme in the city centre, while parking space is also closely regulated. The measures adopted imply a goal of efficiency in promoting Singapore's planning objectives rather than environmental, safety or equity considerations, although the first two of these have lately received much more attention than formerly. The policies’ effect has been a temporary reversal in the growth of car ownership, but this growth has since resumed and recent further fee increases suggest a panic reaction rather than a coordinated strategy. Such coordination appears at present to be hampered by the fragmented administration of matters relating to transport. Other measures relating to car ownership and use in Singapore are also described.  相似文献   

11.
Collecting microscopic pedestrian behavior and characteristics data is important for optimizing the design of pedestrian facilities for safety, efficiency, and comfortability. This paper provides a framework for the automated classification of pedestrian attributes such as age and gender based on information extracted from their walking gait behavior. The framework extends earlier work on the automated analysis of gait parameters to include analysis of the gait acceleration data which can enable the quantification of the variability, rhythmic pattern and stability of pedestrian’s gait. In this framework, computer vision techniques are used for the automatic detection and tracking of pedestrians in an open environment resulting in pedestrian trajectories and the speed and acceleration dynamic profiles. A collection of gait features are then derived from those dynamic profiles and used for the classification of pedestrian attributes. The gait features include conventional gait parameters such as gait length and frequency and dynamic parameters related to gait variations and stability measures. Two different techniques are used for the classification: a supervised k-Nearest Neighbors (k-NN) algorithm and a newly developed semi-supervised spectral clustering. The classification framework is demonstrated with two case studies from Vancouver, British Columbia and Oakland, California. The results show the superiority of features sets including gait variations and stability measures over features relying only on conventional gait parameters. For gender, correct classification rates (CCR) of 80% and 94% were achieved for the Vancouver and Oakland case studies, respectively. The classification accuracy for gender was higher in the Oakland case which only considered pedestrians walking alone. Pedestrian age classification resulted in a CCR of 90% for the Oakland case study.  相似文献   

12.
Cost-benefit analysis is a tool in government decision-making for determining the consequences of alternative uses of society’s scarce resources. Such a systematic process of comparing benefits and costs was adopted in early years for transportation projects and it has been the subject of much refining over the years. There are still some flaws, however, in the application of the method. In this article we have studied the impact of weather conditions on traffic speed on low traffic roads often exposed to adverse weather. This is an issue not currently considered in the cost-benefit analysis of road projects. By using two analytical approaches—structural equation modelling and classification and regression tree analysis—the impact of the weather indicators temperature, wind speed, and precipitation on traffic speed has been quantified. The data relates to three winter months on the European Route 6 road over the mountain pass Saltfjellet in Norway. Increase in wind speed, increase in precipitation and temperatures around freezing point all caused significant decrease in traffic speed in the case studied. If actions were taken to reduce the impact of adverse weather on traffic (e.g. by building a tunnel through the mountain) this study indicates that the road users would gain a total benefit of approximately 2,348,000 NOK (282,000 EUR) each winter at Saltfjellet if all the weather related benefits were included. We argue that this is a significant number that is highly relevant to include in CBAs. This applies both to the CBAs of new transportation projects as well as when resources are allocated for operation, maintenance, and monitoring of the existing transport systems. Including the weather related benefits would improve the application of CBA as a decision-making tool for policy makers.  相似文献   

13.
The ability of conventional South African travel analysis practices to analyse adequately the travel needs of the poor is examined. The origins and nature of conventional practices are described, and it is observed that typically their scope has been limited to motorized modes, commutes and peaks. The paper reports on the findings of an activity diary survey administered in Cape Town that extended the conventional scope of analysis. An activity‐based survey method was selected because it typically yields higher rates of trip recall than other methods and is therefore relatively well suited to investigating travel behaviour in its fuller complexity. Selected findings of the survey are presented to demonstrate that travel occurring by non‐motorized modes, for non‐work purposes and during off‐peak periods, is considerable. It is argued that the conventional limitation in analytical scope can create serious misconceptions of the true nature of travel behaviour, particularly of low‐income households. By restricting the focus of analysis to motorized, work and peak period trip‐making, there is a risk of a routine bias being introduced in the way the urban passenger transport problem is understood, and in the nature of the interventions that are implemented as a result.  相似文献   

14.
Wang  Kailai  Akar  Gulsah 《Transportation》2019,46(6):2117-2136

Autonomous vehicles (AVs), with an expectation of improving road safety, are closer to becoming a reality. A large number of people are still concerned about how AVs would operate in real-life driving environments. The present paper investigates the factors that affect people’s views of the interactions between AVs and other road users based on a large sample from the 2015 and 2017 Puget Sound Travel Surveys. We specifically highlight the effects of the neighborhood environment and road infrastructure. We estimate a generalized ordered logit model to demonstrate the extent to which certain neighborhood environment and road infrastructure features affect individuals’ safety perceptions of AVs, controlling for demographics, daily travel patterns, and general interest in riding AVs. The results reveal that designated bicycle facilities are positively associated with individuals’ safety perceptions related to AVs. We find that residents from neighborhoods with more pedestrian facilities are more likely to express higher levels of concern on AVs’ capabilities to react to the environment. Our results also suggest that people living in mixed-use neighborhoods are more confident in sharing the road with AVs. The findings provide useful implications for effective policy interventions and infrastructure provisions that may affect the market penetration rates of AVs while keeping up the standards for other road users, such as bicyclists and pedestrians.

  相似文献   

15.
Vehicle classification systems have important roles in applications related to real‐time traffic management. They also provide essential data and necessary information for traffic planning, pavement design, and maintenance. Among various classification techniques, the length‐based classification technique is widely used at present. However, the undesirable speed estimates provided by conventional data aggregation make it impossible to collect reliable length data from a single‐point sensor during real‐time operations. In this paper, an innovative approach of vehicle classification will be proposed, which achieved very satisfactory results on a single‐point sensor. This method has two essential parts. The first concerns with the procedure of smart feature extraction and selection according to the proposed filter–filter–wrapper model. The model of filter–filter–wrapper is adopted to make an evaluation on the extracted feature subsets. Meanwhile, the model will determine a nonredundant feature subset, which can make a complete reflection on the differences of various types of vehicles. In the second part, an algorithm for vehicle classification according to the theoretical basis of clustering support vector machines (C‐SVMs) was established with the selected optimal feature subset. The paper also uses particle swarm optimization (PSO), with the purpose of searching for an optimal kernel parameter and the slack penalty parameter in C‐SVMs. A total of 460 samples were tested through cross validation, and the result turned out that the classification accuracy was over 99%. In summary, the test results demonstrated that our vehicle classification method could enhance the efficiency of machine‐learning‐based data mining and the accuracy of vehicle classification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Complexity of car park activity is reproduced from a concurrent execution of behaviour of various drivers. This paper presents a step in the development of a multimodal traffic simulator based on multi‐agent paradigm and designed as a decision aid tool as well as a video game. The user‐player has the opportunity to test different scenarios. We propose an approach for designing the decision‐making rules and the learning mechanism for a car driver agent. For that, a panel of methods such as stated preference modelling, Design Of Experiments and data fusion is used. Initial behavioural models, based on similar preferences, are developed for specified categories. Each agent will adapt its behaviour after executing its learning process. Our approach can be used in order to optimize needs of road network users and those of people in charge of traffic regulation. A demonstrator has been developed to test parking policies in an urban area as well as changes of car park characteristics.  相似文献   

19.
Current modal share in Indian cities is in favor of non-motorized transport (NMT) and public transport (PT), however historical trends shows decline in its use. Existing NMT and PT infrastructure in Indian cities is of poor quality resulting in increasing risk from road traffic crashes to these users. It is therefore likely that the current NMT and PT users will shift to personal motorized vehicles (PMV) as and when they can afford it. Share of NMT and PT users can be retained and possibly increased if safe and convenient facilities for them are created. This shall also have impact on reducing environment impacts of transport system.We have studied travel behavior of three medium size cities – Udaipur, Rajkot and Vishakhapatnam. Later the impact of improving built environment and infrastructure on travel mode shares, fuel consumption, emission levels and traffic safety in Rajkot and Vishakhapatnam are analyzed. For the purpose three scenarios are developed – improving only NMT infrastructure, improving only bus infrastructure and improving both NMT and bus infrastructure.The study shows the strong role of NMT infrastructure in both cities despite geographical dissimilarities. The scenario analysis shows maximum reduction in CO2 emissions is achieved when both PT and NMT infrastructure are improved. Improvement in safety indicator is highest in this scenario. Improving only PT infrastructure may have marginal effect on overall reduction of CO2 emissions and adverse effects on traffic safety. NMT infrastructure is crucial for maintaining the travel mode shares in favor of PT and NMT in future.  相似文献   

20.
Highway work zones caused excessive delay to road users. To reduce user and maintenance costs, work zones shall be designed and scheduled accordingly. An analytical model is developed to jointly optimize work zone lengths and schedule as well as diverted traffic volume for highway maintenance projects, considering time‐varying demand, variable maintenance cost, and various production rates of maintenance crew. With a genetic algorithm, an iterative procedure is developed to search for the optimal solution. A numerical example is illustrated, in which various traffic mitigation plans for a highway maintenance project are evaluated. A sensitivity analysis is conducted, and results indicate the threshold volumes for various conditions (e.g., maintenance crews and capacity of the work zone) at which diverting traffic is desirable. This study demonstrates an effective approach to search for the optimal work zone schedule, which is also applicable to evaluate the effectiveness of traffic diversion plans for a pre‐planned work zone schedule. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号