首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At non‐signalized mid‐block street crossings in China's cities, pedestrians often weave between motor vehicle flows. This paper investigated the influence patterns of the gender and age of pedestrians, the presence of a pedestrian group, vehicles' interference and the crossing direction on the crossing time at non‐signalized mid‐block street crossings in Changsha, China. The results show that the crossing speed is approximately 1–1.1 m/s; the crossing time increases with increasing age, and the crossing speed of a pedestrian will be quicker when the time gap between the pedestrian and the oncoming vehicle is smaller if he/she decides to cross. This paper also analyzed the crossing time pattern when pedestrians cross lane by lane and found that pedestrians spend the most time crossing the first lane and the least time crossing the middle lane, regardless of whether they are crossing from the curb to the central island or from the central island to the curb. The crossing speed is an important input to the design of pedestrian facilities, so these findings can be applied to the assessment of pedestrian crossing safety in China's cities and can provide a basis for the design of pedestrian crossing facilities. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
3.

European Union regulations require haulage companies of member states like the UK to keep records of their drivers’ hours of work. All heavy goods vehicles (HGV's) over 7.5 tonnes are fitted with tachographs which record a driver's operating activities (periods of driving, other work and rest). These records are etched onto a laminated chart by various styli, one of which records the vehicle's speed. This paper describes the development and testing of a new technique for extracting individual driving characteristics from the speed trace of an HGV tachograph chart to calculate four parameters: distance travelled, average speed, time travelled and speed variability.

The average speed, time travelled and speed variability were analysed statistically using one‐way analysis of variance tests. Speed variability was found to be particularly useful for identifying differences between individual driver's behaviour. Once differences in behaviours can be identified it may be possible to link certain driving habits to factors such as component wear, accident rates and excessive fuel usage.  相似文献   

4.
When operated at low speeds, electric and hybrid vehicles have created pedestrian safety concerns in congested areas of various city centers, because these vehicles have relatively silent engines compared to those of internal combustion engine vehicles, resulting in safety issues for pedestrians and cyclists due to the lack of engine noise to warn them of an oncoming electric or hybrid vehicle. However, the driver behavior characteristics have also been considered in many studies, and the high end-prices of electric vehicles indicate that electric vehicle drivers tend to have a higher prosperity index and are more likely to receive a better education, making them more alert while driving and more likely to obey traffic rules. In this paper, the positive and negative factors associated with electric vehicle adoption and the subsequent effects on pedestrian traffic safety are investigated using an agent-based modeling approach, in which a traffic micro-simulation of a real intersection is simulated in 3D using AnyLogic software. First, the interacting agents and dynamic parameters are defined in the agent-based model. Next, a 3D intersection environment is created to integrate the agent-based model into a visual simulation, where the simulation records the number of near-crashes occurring in certain pedestrian crossings throughout the virtual time duration of a year. A sensitivity analysis is also carried out with 9000 subsequent simulations performed in a supercomputer to account for the variation in dynamic parameters (ambient sound level, vehicle sound level, and ambient illumination). According to the analysis, electric vehicles have a 30% higher pedestrian traffic safety risk than internal combustion engine vehicles under high ambient sound levels. At low ambient sound levels, however, electric vehicles have only a 10% higher safety risk for pedestrians. Low levels of ambient illumination also increase the number of pedestrians involved in near-crashes for both electric vehicles and combustion engine vehicles.  相似文献   

5.
6.
Dynamic traffic assignment models have been attracting increasing attention with the progress of traffic management policies based on information technology. These dynamic estimation tools, however, just apply static route choice models either at only origin node or at every arrival node. This paper aims at providing some knowledge on drivers' dynamic route choice behavior using probe‐vehicle data. The results of analyses show that route choice behavior relates to the distance from driver's position to the destination and that dynamic route choice behavior is modeled better by considering decision process during the trip.  相似文献   

7.
At two-way stop-controlled (TWSC) rural intersections, a right-turning driver who is departing the minor road may select an improper gap and subsequently may be involved in a rear-end collision with another vehicle approaching on the rightmost lane on the major road. This paper provides perceptual framework and algorithm design of a proposed infrastructure-based collision warning system that has the potential to aid unprotected right-turning drivers at TWSC rural intersections. The proposed system utilizes a radar sensor that measures the location, speed, and acceleration of the approaching vehicle on the major road. Based on these measurements, the system’s algorithm determines if there will be any potential conflict between the approaching and the turning vehicles and warns the driver of the latter vehicle if such a conflict is found. The algorithm is based on realistic acceleration profile of the turning vehicle to estimate its acceleration rates at different times so that the system can accurately estimate the time and distance needed for the departing vehicle to accelerate to the same speed as for the approaching vehicle. That realistic acceleration profile is established using actual experimental data collected by a Global Positioning System (GPS) data logger device that was used to record the positions and instantaneous speeds of different right-turning vehicles at 1-s intervals. The algorithm also gives consideration to the time needed by the driver of the departing vehicle to perceive the message displayed by the system and react to it (to start departure) where it was found that 95% of drivers have a perception–reaction time of 1.89 s or less. A methodology is also illustrated to select the maximum measurement errors suggested for the detectors in measuring the locations of the approaching vehicle on the major road where it was found that the accuracy of the system significantly deteriorates if the errors in measuring the distance and the azimuth angle exceed 0.1 m and 0.2°, respectively. An application example is provided to illustrate the algorithm used by the proposed system.  相似文献   

8.
以无信号灯路口人车交通行为为研究对象,对行人和机动车辆在无信号灯路口的整体交通行为进行分类预测。在对路口现场交通情况进行拍摄后,用电脑的分帧技术对所需要的数据进行提取和分类,而后建立BP神经网络模型,确定神经网络的输入变量与输出变量。将样本数据导入神经网络并进行训练和测试后,得出行人和车辆过街类型的分类准确率,并且通过准确率所达到的标准来证明了BP神经网络模型的可行性。  相似文献   

9.
Pedestrian scramble phasing is usually implemented to reduce pedestrian‐vehicle conflicts and therefore increase the safety of the intersection. However, to adequately determine the benefits of scramble phasing, it is necessary to understand how pedestrians react to such an unconventional design. This study investigates changes in pedestrian crossing behavior following the implementation of a scramble phase by examining the spatiotemporal gait parameters (step length and step frequency). This detailed microscopic‐level analysis provides insight into changes in pedestrian walking mechanisms as well as the effect of various pedestrian and intersection characteristics. The study uses video data collected at a scramble phase signalized intersection in Oakland, California. Gait parameters were found to be influenced by pedestrian gender, age, group size, crosswalk length, and pedestrian signal indications. Both average step length and walking speed were significantly higher for diagonally crossing pedestrians compared with pedestrians crossing on the conventional crosswalks. Pedestrians were found to have the tendency to increase their step length more than their step frequency to increase walking speed. It was also found that, compared with men, women generally increase their walking speed by increasing their step frequency more than step length. However, when in non‐compliance with signal indications, women increase their walking speed by increasing their step length more than step frequency. It was also found that older pedestrians do not significantly change their walking behavior when in non‐compliance with signal indications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This research intends to explore external factors affecting driving safety and fuel consumption, and build a risk and fuel consumption prediction model for individual drivers based on natural driving data. Based on 120 taxi drivers’ natural driving data during 4 months, driving behavior data under various conditions of the roadway, traffic, weather, and time of day are extracted. The driver's fuel consumption is directly collected by the on-board diagnostics (OBD) unit, and safety index is calculated based on Data Threshold Violations (DTV) and Phase Plane Analysis with Limits (PPAL) considering speed, longitudinal and lateral acceleration. By using a linear mixed model explaining the fixed effect of the external conditions and the random effect of the driver, the influences of various external factors on fuel consumption and safety are analyzed and discussed. The prediction model lays a foundation for drivers' fuel consumption and risk prediction in different external conditions, which could help improve individual driving behavior for the benefit of both fuel consumption and safety.  相似文献   

11.
This paper presents a micro‐simulation modeling framework for evaluating pedestrian–vehicle conflicts in crowded crossing areas. The framework adopts a simulation approach that models vehicles and pedestrians at the microscopic level while satisfying two sets of constraints: (1) flow constraints and (2) non‐collision constraints. Pedestrians move across two‐directional cells as opposed to one‐dimensional lanes as in the case of vehicles; therefore, extra caution is considered when modeling the shared space between vehicles and pedestrians. The framework is used to assess large‐scale pedestrian–vehicle conflicts in a highly congested ring road in the City of Madinah that carries 20 000 vehicles/hour and crossed by 140 000 pedestrians/hour after a major congregational prayer. The quantitative and visual results of the simulation exhibits serious conflicts between pedestrians and vehicles, resulting in considerable delays for pedestrians crossing the road (9 minutes average delay) and slow traffic conditions (average speed <10 km/hour). The model is then used to evaluate the following three mitigating strategies: (1) pedestrian‐only phase; (2) grade separation; and (3) pedestrian mall. A matrix of operational measures of effectiveness for network‐wide performance (e.g., average travel time, average speed) and for pedestrian‐specific performance (e.g., mean speed, mean density, mean delay, mean moving time) is used to assess the effectiveness of the proposed strategies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A disaggregate spatial analysis, using enumeration district data for London was conducted with the aim of examining how congestion may affect traffic safety. It has been hypothesized that while congested traffic conditions may increase the number of vehicle crashes and interactions, their severity is normally lower than crashes under uncongested free flowing conditions. This is primarily due to the slower speeds of vehicles when congestion is present. Our analysis uses negative binomial count models to examine whether factors affecting casualties (fatalities, serious injuries and slight injuries) differed during congested time periods as opposed to uncongested time periods. We also controlled for congestion spatially using a number of proxy variables and estimated pedestrian casualty models since a large proportion of London casualties are pedestrians. Results are not conclusive. Our results suggest that road infrastructure effects may interact with congestion levels such that in London any spatial differences are largely mitigated. Some small differences are seen between the models for congested versus uncongested time periods, but no conclusive trends can be found. Our results lead us to suspect that congestion as a mitigator of crash severity is less likely to occur in urban conditions, but may still be a factor on higher speed roads and motorways.  相似文献   

13.
The low‐luminance monotonous environment in the middle section of highway tunnels offers few reference points and is prone to cause severe visual illusion. Thus, drivers tend to underestimate their driving speed, which can induce speeding behaviors that result in rear‐end collisions. Therefore, discovering low‐cost methods of traffic engineering that reduce this visual illusion and ensure a steady driving speed is an important challenge for current highway tunnel operations. This study analyzes the effects of sidewall markings in typical highway tunnels, specifically observing how their colors and temporal frequencies affect the driver's speed perception in a low‐luminance condition. A three‐dimensional model of the middle section of highway tunnels was built in a driving simulator. Psychophysical tests of speed perception were carried out by the method of limits. The precision of the simulation model was then checked by comparing the results to field test data. The simulation tests studied the stimulus of subjectively equal speed and reaction time in relation to sidewall markings in different colors (red–white combined, yellow–white combined, and blue–white combined). Furthermore, based on the optimal color, the effects of sidewall marking with different temporal frequencies (0.4, 0.8, 1.2, 2, 4, 8, 12, 16, and 32 Hz) on the speed perception of drivers were also analyzed. The test results reveal that the color and temporal frequency of sidewall marking have a significant impact on the driver's stimulus of subjectively equal speed and reaction time. The subjects have the highest speed overestimation and an easy speed judgment with the red–white combined sidewall marking. Within the temporal frequency range of 4.45–7.01 Hz, the subjects have a certain degree of speed overestimation (less than 20%), and the speed perception is sensitive to the temporal frequency changes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In urban emergency evacuation, a potentially large number of evacuees may depend either on transit or other modes, or need to walk a long distance, to access their passenger cars. In the process of approaching the designated pick-up points or parking areas for evacuation, the massive number of pedestrians may cause tremendous burden to vehicles in the roadway network. Responsible agencies often need to contend with congestion incurred by massive vehicles emanating from parking garages, evacuation buses generated from bus stops, and the conflicts between evacuees and vehicles at intersections. Hence, an effective plan for such evacuation needs to concurrently address both the multi-modal traffic route assignment and the optimization of network signal controls for mixed traffic flows. This paper presents an integrated model to produce the optimal distribution of vehicle and pedestrian flows, and the responsive network signal plan for massive mixed pedestrian–vehicle flows within the evacuation zone. The proposed model features its effectiveness in accounting for multiple types of evacuation vehicles, the interdependent relations between pedestrian and vehicle flows via some conversion locations, and the inevitable conflicts between intersection turning vehicle and pedestrian flows. An illustrating example concerning an evacuation around the M&T stadium area has been presented, and the results indicate the promising properties of our proposed model, especially on reflecting the complex interactions between vehicle and pedestrian flows and the favorable use of high-occupancy vehicles for evacuation operations.  相似文献   

15.
16.
Simulating pedestrian movements at signalized crosswalks in Hong Kong   总被引:2,自引:0,他引:2  
This paper presents a new pedestrian simulation (PS) model for signalized crosswalks in Hong Kong. This PS model is capable of estimating the variations of walking speed particularly on the effects of bi-directional pedestrian flows so as to determine the minimum required duration of pedestrian crossing time. Video records taken from the observational surveys at the selected crosswalk in urban area were used to extract the required data for model calibration. It was found that the design walking speed for signalized crosswalks should be varied by the effects of the bi-directional pedestrian flows. It was also interesting to note that the negative impact of the bi-directional flow effects (ranging from uni-directional to bi-directional pedestrian flows) on the chance of pedestrian crossing the crosswalk is increasing from free-flow to at-capacity flow conditions. The new PS model is also validated using an independent data set so as to examine the reliability of the simulation results. The validation results show that the new PS model can provide an accurate evaluation on the changes of walking speed and its standard deviation under different scenarios with particular emphasis on the effects of the bi-directional pedestrian flows. The advancement of this PS model can be applied to assess the effects of each improvement measure and to evaluate the benefits of each scenario in practice.  相似文献   

17.
This study estimates the safety effect of illumination on accidents at highway‐rail grade crossings in the United States, using data from exhaustive data from Federal Railroad Administration database covering the period 2002–2011. Using mixed logit modeling approach, the study explores the determinants of driver injury severity at unlighted highway‐rail grade crossings compared with lighted highway‐rail grade crossings in the United States. Several key issues are explored including availability of relevant highway‐rail grade crossing accident inventory data; relevant data element structures; specification and estimation of models to estimate driver's injury severity with lighting and without lighting; and techniques to interpret model parameters. Overall, highway‐rail grade crossing lighting improves safety by reducing the probability of high‐level injury severity through improvements in driver's visibility compared with unlighted intersections. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This research identifies key variables that influence fuel consumption that might be improved through eco-driving training programs under three circumstances that have been scarcely studied before: (a) heavy- and medium-duty truck fleets, (b) long-distance freight transport, and (c) the Latin American region. Based on statistical analyses that include multivariate regression of operational variables on fuel consumption, the impacts of an eco-driving training campaign were measured by comparing ex ante and ex post data. Operational variables are grouped into driving errors, trip conditions, driver behavior, driver profile, and vehicle attributes.The methodology is applied in a freight fleet with nationwide transport operations located in Colombia, where the steepness of its roads plays an important role in fuel consumption. The fleet, composed of 18 trucks, is equipped with state-of-the-art real-time data logger systems. During four months, 517 trips traveling a total distance of 292,512 km and carrying a total of 10,034 tons were analyzed.The results show a baseline average fuel consumption (FC) of 1.716 liters per ton-100 km. A different logistics performance indicator, which measures FC in liters per ton transported each 100 km, shows an average of 3.115. After the eco-driving campaign, reductions of 6.8% and 5.5% were obtained. Drivers’ experience, driving errors, average speed, and weight-capacity ratio, among others, were found to be highly relevant to FC. In particular, driving errors such as acceleration, braking and speed excesses are the most sensitive to eco-driving training, showing reductions of up to 96% on the average number of events per trip.  相似文献   

19.
In traffic-crowded metropolitan areas, such as Shanghai and Beijing in China, right-turn vehicles that operate with a permitted phase at signalized intersections are normally permitted to filter through large numbers of pedestrians and bicycles. To alleviate such conflicts and improve safety, traffic engineers in Shanghai introduced a prohibited–permitted right-turn operation, adding a subphase to the permitted phase in which right-turns are prohibited. Unfortunately, the prohibited subphase would reduce the capacity of right-turn movements when it prohibits right turns even if there are few pedestrians and bicycles crossing the street. This paper aims at quantifying the impact of both non-vehicular flows and the prohibited subphase on the right-turn capacity, and then proposes a strategy to determine appropriate prohibited–permitted right-turn operation that minimizes the capacity reduction caused by the prohibited subphase. To achieve this goal, we improved the pedestrian and bicycle adjustment factor described in the Highway Capacity Manual by taking into account: (1) the variety in space competition between pedestrians and bicycles, and (2) the effect of two conflict zones in each phase on right-turn operation. In addition, we revised the capacity estimation model in the Highway Capacity Manual, and developed a model based on bicycle/pedestrian volume fluctuation to describe the capacity reduction due to both non-vehicular flows and the prohibited subphase. Furthermore, we proposed a timing strategy for the onset and duration of appropriate prohibited subphase. When bicycle and pedestrian volumes are low, the actuated strategy turns to the permitted phase. When these volumes are moderate, the strategy turns to the prohibited–permitted operation. With the volumes increasing, the prohibited subphase onset advances and duration increases. In these two scenarios, the new strategy has higher right-turn capacity than the current pretimed prohibited–permitted operation. Unfortunately, when bicycle and pedestrian volumes are high, the strategy yields similar right-turn capacity. However, the new prohibited subphase has less potential vehicle–bicycle and vehicle–pedestrian conflicts.  相似文献   

20.
This paper presents the development and assessment of models to estimate pedestrian demand based on the level of pedestrian activity (high and low). As activity varies by the time of the day, temporal variations were evaluated by considering different time periods. Data collected at 128 low and 48 high pedestrian activity signalized intersections (a total of 176 signalized intersections) in the City of Charlotte, North Carolina were used to develop and assess the models using stepwise regression analysis through backward elimination of independent variables (includes demographic, land use, and network characteristics). The use of different buffer widths (proximal area) to extract these characteristics was also evaluated. Results, in general, show that pedestrian demand varied by the level of activity, explanatory variables extracted by buffer width, and time of the day. The estimates from the models could be used in transportation planning (identify required pedestrian facilities, resource allocation), safety, and operational analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号