首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为研究横风作用下泉州湾跨海大桥主桥的行车安全,基于风-车-轨-桥耦合振动分析方法,分析了横风作用下泉州湾跨海大桥主桥及桥上高速列车的动力响应,并根据既有规范评价标准,评价桥上列车的抗风安全性,提出了大风环境下桥上安全行车的风-车速阈值。结果表明:主梁跨中横、竖向动力响应随来流风速的增加而增大,尤其是主梁横向位移受来流风速的影响较为显著;列车动力响应随着车速的增加而增大,而高风速环境会放大车速对列车行车安全性的影响;与单线行车相比,双线列车作用主要影响桥梁的竖向位移,设计时速下约为单线作用的1.60~1.94倍,而车辆动力响应的变化较小;为保证桥上列车运行安全,当风速>20 m/s时,桥上行车需要限制速度,其中当风速<30 m/s时,建议关闭交通。  相似文献   

2.
以泉州湾跨海大桥为工程背景,采用CFD(Computational Fluid Dynamics)数值仿真方法研究在横风作用下CRH3列车通过塔梁交汇区时气动荷载的变化。基于风-车-线-桥耦合振动分析方法研究车辆的动力响应,对车辆行车安全性和乘坐舒适性作出评价。结果表明:考虑塔梁交汇区风场效应对车辆的影响后,车辆气动荷载发生突变,各项动力响应均有所增大,车体加速度变化较显著;当风速达到25 m/s时,横向加速度增大34%,竖向加速度增大41%,均超过了规范限值,桥上行车需要限制车速;在分析横风作用下高速列车的动力响应时,塔梁交汇区风场效应引起的列车气动荷载变化不容忽视。  相似文献   

3.
基于计算流体力学及弹性体在多体系统中的耦合理论,将计算流体力学、多体系统动力学及有限元结合起来,构建横风环境中列车-桥梁系统耦合振动的仿真平台,并以平潭海峡大小练岛水道斜拉桥为研究对象开展研究。列车-桥梁系统的气动模型构建采用局部动态层网格方法,计算列车-桥梁系统在不同风速和车速下的气动荷载。基于有限元方法和多体系统动力学方法建立列车-桥梁系统多体动力学模型,以时间激励方式施加气动荷载,仿真计算双线会车时不同风速和车速工况下列车-桥梁耦合系统的动力响应。研究结果表明:(1)随着风速的增大,桥梁主跨跨中竖向位移变化很小,而跨中横向位移显著增大,跨中竖向和横向振动加速度亦明显增大。风速和车速分别在30 m/s与300 km/h以内时,桥梁的挠度和振动加速度均能满足要求。(2)横风环境下列车在桥梁上运行时,头车的动力特性最为不利。随着风速和车速的增大,车辆的动力学指标均呈增大趋势。(3)列车行至桥梁跨中时轮重减载率出现最大值,两车交会时车体横向加速度发生突变且出现最大值,部分动力学指标不满足要求。(4)双线会车时,风速在10、20、30 m/s时的临界安全车速分别为296、256、147 km/h,临界舒适车速分别为166、150、106 km/h。  相似文献   

4.
高速行车条件下轨道几何不平顺敏感波长研究   总被引:1,自引:0,他引:1  
应用车辆-轨道耦合动力学理论及分析软件TTISIM,研究轨道几何不平顺波长变化对高速车辆系统动力响应影响,探讨高速行车条件下轨道几何不平顺敏感波长问题。结果表明:在250~400km/h行车速度域,高速列车系统动力响应指标随轨道不平顺波长变化存在一个幅值相对较大区间;轨道不平顺类型和行车速度不同,敏感区间对应轨道不平顺波长范围亦不相同。综合对比发现:在250~400km/h行车速度域,轨道高低、方向和水平不平顺在长波段敏感波长范围分别约为80~160m、40~120m和50~160m;在相同行车速度条件下,轨道扭曲不平顺在长波段敏感波长范围约为40~100m。  相似文献   

5.
西部风沙地区强风沙流对高速列车运行带来巨大安全隐患。高速列车的行驶线路一般分为平直地面、路堤及高架桥等,不同线路类型对高速列车气动特性的影响差异明显,尤其在强横风下,列车运行的流场特性更加复杂。为研究风沙环境下不同线路类型对高速列车横风气动特性的影响,采用数值模拟方法对列车运行速度250 km/h,横风风速分别为10,20,30,40,50 m/s,线路结构分别为平直地面、5 m路堤及10 m高架桥等不同工况下的列车气动性能进行仿真对比分析。计算结果表明:风沙环境下列车迎风侧正压区域及背风侧负压区域相比无沙环境均增大,其中,头车在平地工况下压力增幅最大,路堤及高架桥工况较小;风沙流中沙粒增加了列车的阻力,随着横风风速增大,头车阻力系数减小,尾车阻力系数增大,中间车阻力系数基本不变,列车侧向力系数均增大;在同一横风风速下,不同类型线路对头车的阻力系数和侧向力系数影响最大,其中,在路堤工况下列车稳定性较差,更容易发生侧翻危险。  相似文献   

6.
研究目的:悬挂式单轨梁梁部活恒载荷比大、宽跨比小,具有结构刚度小、阻尼比小等特点,易发生风致振动,从而影响悬挂式单轨列车乘坐舒适性、结构耐久性及安全性。本文采用ANSYS软件建立桥梁模型,在SIMPACK软件中建立车辆模型,对车辆和桥梁子系统施加静风力和脉动风力,建立风车桥耦合动力系统。以某悬挂式单轨双线7跨30 m简支梁方案为例,进行不同风速激励下双线列车交会的系统动力响应分析。研究结论:(1)采用通用软件可以开展悬挂式空轨风车桥耦合动力分析;(2)气动三分力系数在不同车桥组合下变化明显,横风对双车交会过程中背风侧车辆的风载突变效应强于迎风侧车辆;(3)梁部跨中横向位移在风速15 m/s到25 m/s区间随着风速的增大而增大,平均风对迎风侧轨道梁横向位移的影响比背风侧大;(4)双车交会过程中,迎风侧车辆横向加速度变化不明显,由于背风侧车辆三分力系数的显著变化,横向加速度在交会开始和结束时变化明显,风载突变效应显著;(5)本研究成果可为悬挂式单轨交通系统的结构设计与运输管理提供参考。  相似文献   

7.
高速铁路涵洞附近路基动力响应试验研究   总被引:7,自引:4,他引:3  
介绍秦沈客运专线试验段上 ,在两个洞顶填土厚度不同的涵洞附近进行的路基动应力测试。试验研究表明 :高速列车作用下路基对行车速度的动力响应是先增大后减小的 ,速度为 2 0 0km/h时的动力响应最大 ;跨度为 6 0m的涵洞 ,其洞顶填土厚度取 1 5m是合适的 ,可以满足 2 70km /h速度范围内线路的平顺、安全性要求  相似文献   

8.
双层高速动车组因其重心高、迎风面积大等特点,运行安全受横风影响更为显著。以我国某双层高速动车组作为研究对象,建立横风条件下3节车辆编组的气动仿真分析模型,通过与风洞试验数据比较,验证模型有效性,仿真得到了在不同横风条件下各车辆所受到的气动载荷,基于EN14067标准中的五质量模型方法,分析了横风条件下双层高速动车组倾覆安全性,得到了列车临界倾覆风速曲线。研究结果表明:横风条件下头车气动载荷最大,且在60°左右的侧滑角时达到最大;当横风垂直于列车行进方向时,临界倾覆风速随车速增加而下降,在车速为80 km/h左右,其下降趋势出现明显的变化,动车组以200 km/h速度运行在平地时,头车临界倾覆风速为22.5 m/s。在同等车速条件下,头车临界倾覆风速随风向角的增加迅速下降,平地路况在风向角为90°时取得最小值,路堤和桥梁路况在风向角为80°时取得最小值。在平地、10 m高度路堤和桥梁3种路况条件下,路堤情况的倾覆风速最小。横向未平衡加速度、空重车状态对列车横风安全性也有显著影响,当加速度与横风风速同向时,其头车临界倾覆风速值随横向未平衡加速度的增加而下降,而重车状态下的临界倾覆风速高于同...  相似文献   

9.
横风作用下高速列车安全运行速度限值的研究   总被引:2,自引:0,他引:2  
横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h,横风速度分别为10、15、20、25和30m/s,风向角为90°的25个工况进行气动特性的数值模拟,并采用国内实测轨道谱和德国轨道谱分别对这25个工况的车辆轨道动力学性能进行仿真计算和对比分析。结合国家标准和技术规范,给出CRH3型列车在平地上运行时,横风风速与列车最大安全运行速度之间的对应关系,为横风作用下的列车运行安全控制提供参考。  相似文献   

10.
为了研究非定常气动力荷载对桥上列车行车安全性和舒适性的影响,结合有限元软件ANSYS和多体动力学软件SIMPACK,建立列车-轨道-桥梁三维多体系统模型,计算风-列车-桥梁耦合系统的动力响应;对比分析定常与非定常气动力荷载作用下桥上列车的行驶安全与舒适性,研究非定常气动力荷载作用下不同横向风速对列车行驶安全的影响。研究结果表明:列车行驶速度为200~300km/h,无风荷载情况下,各安全性与舒适性指标值均满足要求且均小于风荷载作用。横风作用下平均风速为20 m/s,考虑非定常气动力荷载的影响不仅会使列车行驶安全评估结果更安全,还会使列车舒适性评估结果偏于保守。平均风速不超过20 m/s,车速控制在250 km/h,桥上列车行车安全、舒适性均满足要求,且平稳性等级可达到"良好"以上。通过对不同横向风速下桥上列车行驶安全分析,给出桥上列车安全行驶的阈值,为列车的安全运营提供依据。  相似文献   

11.
针对高速铁路的桥涵与临近路基由于存在材料和沉降的差异形成的刚度和几何不平顺,对路涵过渡段的动态响应和影响范围进行研究。本文建立"车辆-轨道-过渡段"垂向耦合动力模型,研究过渡段路基的动态响应特征,并与京沪高速铁路廊坊段路涵过渡段现场实测值进行对比。结果表明,当运行速度小于300km/h时,过渡段基床动应力、加速度、垂向位移等随速度增加而增大;在300km/h时动应力、加速度出现最大值,动位移随行车速度呈线性增大;从动应力、加速度的影响范围看,运行速度在300km/h以下时路涵过渡段影响范围为20~25m,300km/h及以上时,过渡段长度达到30~35m。当设计速度超过300km/h时,应适当加长路涵过渡段长度。  相似文献   

12.
为研究温度-轨道不平顺组合激励下千米级矮塔斜拉桥上无砟轨道的行车安全,根据运营环境确定温度荷载工况,并采用ANSYS进行静力分析,确定最不利温度荷载工况。基于车-轨-桥耦合动力分析理论,分析温度-轨道不平顺组合激励下千米级的矮塔斜拉桥上无砟轨道行驶高速列车的动力响应,计算不同行车速度对车辆和桥梁动力响应的影响,并根据现有规范标准,评价千米级的矮塔斜拉桥上无砟轨道的行车安全,提出温度-轨道不平顺组合激励下桥上安全行车的舒适行驶速度范围。分析结果表明:以350 km/h设计行车速度过桥时,动车、拖车垂向加速度最大值分别为0.8 m/s2和0.66 m/s2,各动力响应数据均处于优良水平,满足相关规范要求;车体的加速度最值与行车速度呈正相关趋势;行车速度为400 km/h时,动车车体垂向加速度最大值为0.95 m/s2,是行车速度为250 km/h的1.48倍;当车速达到400 km/h时,Sperling舒适性指标由“优秀”转为“良好”,行车舒适度相对较差。为保证桥上行车安全,建议行车速度不超过400 km/h。  相似文献   

13.
基于列车空气动力学和列车系统动力学数值模拟横风下高速列车通过挡风墙的动力学性能。以运行速度为350km/h的高速列车通过一类挡风墙为例,分析高速列车通过挡风墙的气动力和动力学响应。当高速列车进入和离开挡风墙时,列车的安全性和舒适性指标明显变差。当横风速度为9.56m/s时,车体横向振动加速度最大值达到2.5m/s2;当横风速度为15.0m/s时,列车的脱轨系数超过0.7且轮重减载率超过0.8。在此基础上提出一类具有缓冲装置的挡风墙,使高速列车通过挡风墙时的安全性和舒适性明显改善。  相似文献   

14.
良好的横风运行安全性是实现高速动车组速度能力提升的有效手段.现搭建了基于空气动力学和车辆系统动力学的高速列车车辆横风运行安全性耦合计算模型,根据动车组在不同车速(150~300 km/h)和风速(10~35 m/s)下的气动力和气动力矩计算结果,分析了不同气动载荷对动车组动力学性能的影响.在此基础上,提出了CRH3G动车组的横风运行安全速度域.  相似文献   

15.
随着兰新线上通过列车速度的提高,现有土堤式防风墙的防护效果亟需改善,考虑在原有挡风墙顶部进行局部加高改造。基于三维定常、不可压N-S方程与κ-ε双方程湍流模型,采用棚车为代表车型,在横风风速为50 m/s时,分别对不同加高高度的对称和非对称土堤式挡风墙条件下运行速度为120 km/h的货物列车所受气动力进行了数值模拟,以车辆倾覆力矩为考核指标分析挡风墙加高高度对棚车气动性能的影响。研究结果表明,在现有土堤式挡风墙顶部局部加高能有效地提高其对列车的防风作用;其对称土堤式挡风墙合理加高高度为0.28 m,迎风侧高度1 m和2 m的非对称土堤式挡风墙合理加高高度分别为0.62和0.49 m。结果为工程实际应用提供了理论依据。  相似文献   

16.
西南地区由于地处板块交界、地质灾害易发,多高山深谷、大江急流,桥墩基础受水流冲刷、盐碱腐蚀、地震破坏等造成基础约束能力下降等问题。针对西南地区高铁建设中,横风激扰并伴随基础刚度下降对列车过桥影响进行分析,基于多体动力学方法利用SIMPACK/Rail搭建CRH3型高速列车子模型,基于有限元方法利用ANSYS/APDL搭建斜拉桥子模型,并利用确定界面模态综合法搭建车-桥耦合模型。以此研究列车过桥振动、墩台基础刚度下降、桥墩横向刚度下降、脉动风加载、不同车速、不同风速对列车走行安全平稳性的影响特性及其阈值。结果表明:列车驶过斜拉桥易激起桥面/车辆1 Hz以下低阶模态;脉动风在原条件基础上使得桥面、轮轨、车体振动响应进一步加剧,1~2 Hz低频振动被激起;车辆动力学指标峰值均随平均风速及车速的增大而增大,车速为150,200,250 km/h时,风速阈值为27.5,23.5,17.5 m/s;墩台基础横向刚度下降对列车走行性影响不明显,但当其发展至90%以上,桥梁响应急剧增加会严重影响列车运行安全;车、桥横向振动响应随着桥墩横向刚度下降而迅速增大,预设风速10 m/s条件下,车速为150,2...  相似文献   

17.
随着我国交通的发展及城市客运量的不断增加,提速成为中低速磁浮发展和推广的核心竞争力。为研究长沙中低速磁浮低置结构段最高运营速度,在长沙磁浮低置结构段开展动力响应现场试验,实测不同时速、载荷等工况下低置结构振动加速度、动位移与动应变以及车辆振动等,分析承轨梁、路基、车辆的动力响应特征,得出长沙磁浮低置结构动力响应变化规律与建议运营速度。结果表明:当试验速度为100~125 km/h时,承轨梁、路基及车辆的各动力指标均满足规范要求;当试验速度达到130 km/h时,超载工况下车辆垂向加速度最大为1.14 m/s2,超过规范限值且列车运行过程中存在磁浮掉点砸轨现象;建议长沙磁浮低置结构段最高运营速度不高于125 km/h;行车平顺性和舒适性是影响磁浮提速的主要因素。长沙磁浮正式提速运营至今已达半年,运行平稳,相关研究成果可供磁浮提速工程参考。  相似文献   

18.
将轨道不平顺作为系统的内部激励,风载荷作为外部激励,考虑静风力和脉动风力,采用自编程序TYWTB建立车桥耦合系统动力学模型,进行不同风速激励下不同速度列车通过桥梁时的系统动力响应分析,并对车辆的安全性和舒适性进行评价。结果表明:随着风速的增加,车桥系统的动力响应增大,中跨最大垂向动挠度和横向动位移均出现在行车侧上弦;随着车速的增加,车桥系统的动力响应增大,桥上车辆的安全性和舒适性随车速的增加而降低;桥面风速等于或小于25m·s-1时,160~250km·h-1车速范围内车辆响应未超限值;当桥面风速达到30m·s-1时,160~250km·h-1范围内动车横向加速度均超限,拖车在车速250km·h-1时轮重减载率超限,行车安全无法保证;由于沪通长江大桥桥梁对车辆受风面的遮挡,平均风速达到25m·s-1时仍能保证车辆的运行安全和乘坐舒适,满足《铁路技术管理规程》的相关要求;沪通长江大桥铁路桥面采用了钢箱结构,增强了竖向、横向刚度和抗扭刚度,使得桥梁在风场和列车的共同作用下整体性能良好。  相似文献   

19.
采用列车空气动力学和列车系统动力学方法研究横风环境下25T型客车与CRH5型动车组交会对25T型客车动力学性能的影响。利用三维、可压缩和非定常N-S方程的数值模拟方法计算不同横风风速、不同交会速度下作用于25T型客车车体的气动力及力矩。利用SIMPACK软件建立25T型客车三维系统动力学仿真模型,分析横风风速、车速以及交会对列车系统动力学性能的影响。研究结果表明:在交会开始以及结束时刻,列车的系统动力学性能下降;同时在脱轨系数、倾覆系数以及轮轴横向力中,倾覆系数最为敏感;在一定变化范围内,风速变化相比于车速变化对列车运行安全性影响更大,风速由20 m/s增加到25 m/s时列车的倾覆系数增加68%,而车速由120 km/h增加到160 km/h时列车的倾覆系数增加8%;在25T型客车车速为120,140和160 km/h时允许最高风速分别为32.8,33和32.6 m/s;交会对25T型客车动力学性能的影响随着风速的增加而增加,在风速为35 m/s时,交会对脱轨系数、倾覆系数以及轮轴横向力的影响率达到49%,42.2%和25.3%。  相似文献   

20.
京沪高速铁路南京大胜关长江大桥风-车-桥耦合振动分析   总被引:3,自引:1,他引:2  
用多刚体结构模拟车辆,空间梁单元模拟桥梁,轮轨密贴假定和蠕滑理论处理轮轨间作用力,以快速谱分析法模拟风速场,对桥梁子系统施加静风力和抖振风力,对车辆子系统施加稳态风力,采用实测桥梁3分力系数,建立风-车-桥耦合动力系统.以南京大胜关长江大桥主桥6跨连续钢桁拱为例,进行0~40 m·s1风速下风-车-桥耦合系统动力分析.分析结果表明:桥梁系统的动力响应随桥面风速的增加而增大,其横向响应对风荷载的敏感程度大于竖向响应;桥面平均风速不超过15 m·s-1时,高速列车可以设计速度安全通行桥梁;风速在15~20 m·s-1时,安全通过桥梁的车速不应超过240 km·h-1;风速在20~25 m·s-1时,车速不应超过180 km·h-1;风速在25~30 m·s-1时,车速不应超过160 km·h-1;风速超过30 m·s-1时,不能保证列车安全通过桥梁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号