首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
为探索纤维沥青混合料抗剪强度的特点及影响因素,研究选择新型路用矿物纤维、玄武岩纤维和木质素纤维沥青混合料的抗剪强度为研究对象,以最大公称粒径、级配类型、纤维掺量和纤维种类为参数,采用抗剪强度试验仪对纤维沥青混合料抗剪强度进行测试,并尝试利用爱因斯坦粘度原理解释纤维沥青混合料与普通沥青混合料抗剪强度差异性。研究结果表明:在一定范围内最大公称粒径越大、纤维掺量越高,沥青混合料抗剪强度越大;同条件下的SMA混合料的抗剪强度大于AC沥青混合料;抗剪强度大小排序为玄武岩纤维混合料〉新型路用矿物纤维混合料〉木质素纤维混合料。  相似文献   

2.
为研究冻融循环条件下不同纤维种类对沥青混凝土强度的影响,采用冻融循环试验和劈裂试验方法,对比分析了不同纤维种类及不同掺量的沥青混凝土劈裂强度变化规律,研究结果表明:在冻融循环作用下,矿物纤维沥青混凝土的劈裂强度均为最佳值,其次是聚酯纤维沥青混凝土,木质素纤维沥青混凝土的劈裂强度最小;在经过9次冻融循环后,当纤维掺量为4%时,矿物纤维、聚酯纤维及木质素纤维沥青混凝土的劈裂强度均为最大值。其结论可为纤维沥青混凝土的设计及施工研究提供参考和借鉴。  相似文献   

3.
纤维沥青胶浆流变性能的试验研究   总被引:1,自引:0,他引:1  
为考察纤维沥青胶浆的高温性能和流变性能,对掺不同种类和剂量纤维的沥青胶浆进行不同温度下的粘度试验和动态剪切流变试验,分析纤维沥青胶浆的粘度、复数模量、相位角和抗车辙因子的变化规律,同时分析粘度与抗车辙因子的相关性。研究结果表明,纤维对沥青胶浆有明显的增粘与增弹作用,其中聚酯纤维最大,其次为木质素纤维,矿物纤维最弱;随着纤维掺量的增大,纤维增粘和增弹作用逐步发挥,当掺量达到沥青质量的0.04%时,纤维沥青胶浆的粘度、复数模量和抗车辙因子显著增大而相位角显著降低;纤维沥青胶浆的粘度与抗车辙因子存在良好的线性关系。  相似文献   

4.
将聚丙烯纤维掺入沥青混合料中配制聚酯纤维改性沥青混合料,通过室内试验分析该沥青混合料的路用性能。结果表明,聚酯纤维的掺入可显著提高沥青混合料的高温稳定性,其掺量由零增加到0.35%的过程中增强效果越来越明显;随着聚酯纤维掺量的增加,沥青混合料的低温抗裂性能增强,掺量为0.3%时低温抗裂性能最佳;纤维掺量大于0.3%时,沥青混合料的最大弯拉应变不升反降;考虑经济性与路用性能,聚酯纤维的最佳掺量为0.25%~0.3%。工程应用结果表明,采用聚酯纤维改性沥青混合料作为路面面层,路面强度、抗裂与抗变形能力优异。  相似文献   

5.
为了提升沥青混合料的性能,采用滑移剪切试验装置测试了木质素纤维、矿物纤维、聚酯纤维、复合纤维在相同掺量与各自最佳掺量下纤维沥青混合料的滑移剪切性能,验证纤维的加筋效果。试验结果表明:加入纤维后,沥青混合料的滑移剪切能大大提高,纤维显著改善了沥青混合料的加筋效果;不同种类的纤维沥青混合料滑移剪切能有明显的区别。  相似文献   

6.
采用动态模量试验、间接拉伸疲劳试验和车辙试验研究了掺加木质素纤维、聚酯纤维和玄武岩矿物纤维的沥青混合料的路用性能。结果表明,各种纤维掺入后能增大纤维沥青混合料的动态模量,其中聚酯纤维的增强作用最为显著;同时,掺加各种纤维后沥青混合料的疲劳性能和高温抗车辙性能也得到明显改善。  相似文献   

7.
通过室内车辙试验、低温弯曲试验和三点小梁疲劳试验研究了3种纤维对强嵌挤骨架密实(SISG)沥青混合料路用性能的影响,结果表明随纤维掺量的增加,SISG沥青混合料动稳定度及低温弯曲应变呈先增后减的趋势。矿物纤维、木质素纤维和聚酯纤维掺量分别为0. 3%、0. 5%、0. 2%时,SISG沥青混合料高温性能、低温性能达到最佳。与未掺纤维SISG沥青混合料相比,0. 3%矿物纤维、0. 5%木质素纤维和0. 2%聚酯纤维SISG沥青混合料高温性能分别可提升22%、13%、20%,低温性能分别可提升32%、30%、23%,疲劳性能分别可提升25%、6%、36%。  相似文献   

8.
纤维沥青混凝土劈裂性能试验研究   总被引:1,自引:0,他引:1  
高丹盈  黄春水  赵军 《公路》2012,(6):176-184
通过在AC-13Ⅰ基体中外掺聚酯纤维和玄武岩矿物纤维,以温度为参数,进行劈裂试验,分析温度对劈裂抗拉强度、拉伸应变和劈裂破坏劲度模量的影响机理,建立纤维沥青混凝土劈裂破坏荷载和劈裂破坏劲度模量与温度的关系;通过在AC-13Ⅰ基体中外掺不同长径比的聚酯纤维,在不同温度下进行劈裂试验,分析纤维在劈裂面上的典型分布形态和不同温度下纤维的破坏形态,研究长径比变化对沥青混凝土劈裂性能的影响机理,建立不同温度纤维沥青混凝土劈裂抗拉强度与纤维长径比的关系;通过在AC-13Ⅰ基体中外掺聚酯纤维和玄武岩矿物纤维,以纤维掺量和温度为参数,进行劈裂试验,分析纤维掺量对劈裂抗拉强度、拉伸应变和劈裂破坏劲度模量的影响机理,建立劈裂抗拉强度、拉伸应变和劈裂破坏劲度模量与纤维掺量的关系。结果表明:温度是影响沥青混凝土劈裂性能的主要外部因素;纤维长径比和掺量对劈裂性能的影响规律与温度有关。  相似文献   

9.
玄武岩纤维沥青胶浆路用性能研究   总被引:2,自引:0,他引:2  
通过高温流变性能、低温流变性能、抗剪性能和拉伸性能试验,对玄武岩纤维沥青胶浆路用性能进行了系统地研究,并与木质素纤维、聚酯纤维进行了对比分析.试验结果表明:纤维的掺入对沥青胶结料的抗车辙性能具有良好的改善作用,改善效果从大到小排序为:木质素纤维>聚酯纤维>石金纤维>福倍安纤维>北美孚纤维;纤维的掺入能够改善胶浆的低温性能,石金纤维表现较好;纤维能够有效改善沥青结合料的抗剪切性能,木质素纤维>聚酯纤维>北美孚纤维>石金纤维>福倍安纤维;纤维的掺入增加了沥青的黏度;玄武岩纤维较聚酯纤维和木质素纤维更能提高沥青的劲度.  相似文献   

10.
《中外公路》2021,41(2):307-310
为改善严寒地区沥青胶浆的低温性能,该文选用3种长度、3种掺量的玄武岩纤维,3种普通沥青,研究纤维长度、掺量和沥青标号对纤维吸附沥青能力、纤维沥青低温最大拉力、纤维沥青低温应变能、纤维沥青冻融后锥入抗剪强度的影响。结果表明:纤维掺量对沥青的吸附能力影响最大;纤维长度对沥青的低温最大拉力、低温应变能影响最大;沥青标号对冻融后锥入抗剪强度影响最大;基于综合平衡法理论,纤维沥青胶浆最优方案为选用9 mm玄武岩纤维、110~#普通沥青,纤维以7%的掺量拌和的纤维沥青胶浆在低温地区使用性能最优。  相似文献   

11.
为改善纤维和天然沥青单一改性沥青混合料的技术缺陷,将木质素、聚酯、玄武岩纤维与BRA岩沥青、TLA湖沥青、NES青川岩沥青进行复配。基于直接剪切试验优化了最佳的天然沥青掺配范围,采用车辙、低温弯曲、浸水马歇尔、冻融劈裂和四分点加载疲劳试验研究了天然沥青与纤维复合改性沥青混合料的路用性能和抗疲劳耐久性,试验结果表明,木质素、聚酯、玄武岩三种单纤维掺量为0.3%,BRA、TLA、NES掺量为8%~10%时天然沥青与纤维复合改性沥青经济性和抗剪切性能最优;将天然沥青与纤维复配后,可兼具纤维与天然沥青各自改性的优势,可实现二者对沥青改性效果的叠加,其混合料兼顾高低温性能、水稳定性和抗疲劳耐久性,且具有良好的经济性,为路面材料改性技术提供了一种新的选择。在0.3%木质素、聚酯、玄武岩纤维掺和8%~10%BRA、TLA、NES掺量范围内,18种天然沥青与纤维复合改性沥青混合料疲劳性能优于SBS改性沥青混合料,推荐用于复合改性沥青中的木质素纤维、聚酯纤维、玄武岩纤维掺量为0.3%,适宜的BRA、TLA、NES掺量分别为8%~10%、8%~12%、8%~10%。  相似文献   

12.
为了研究纤维种类及掺量对桥面铺装浇注式沥青混合料路用性能的影响,首先基于关键指标对混合料的矿料级配进行了设计。然后研究了不同掺量的颗粒木质素纤维、玄武岩纤维、聚酯纤维对浇注式沥青混合料高低温性能、水稳定性、疲劳性能的影响。再基于加速加载试验对浇注式沥青混合料的长期耐久性能进行了评价,建立了桥面全厚度沥青混合料铺装的耐久性能预测方程。最后分析了纤维增强沥青混合料性能作用机理。结果表明:纤维能够明显改善浇注式沥青混合料的路用性能;不同类别的纤维对沥青混合料性能提升作用各异,玄武岩纤维的改善效果优于木质素纤维和聚酯纤维;纤维对浇注式沥青混合料性能的增强作用随纤维掺量的增加先增大后减小;木质素纤维、玄武岩纤维、聚酯纤维在最佳掺量4%,6%,8%时,混合料的性能最优;浇注式沥青混合料高温抗永久变形能力相对较差,试验车辙动稳定度不超过500次/mm;在最佳掺量下,木质素纤维、玄武岩纤维、聚酯纤维可分别提升浇注式沥青高温抗车辙性能的72%,94%,44%;纤维增强浇注式沥青混合料的疲劳寿命随应变水平的增加呈指数函数递减趋势;组合铺装结构(3.5 cmSMA13+下面层3 cmGA10)的车辙深度与加速加载次数呈良好的指数关系,加速加载试验结合数值分析方法能够较为准确地预测铺装结构的耐久性能。  相似文献   

13.
对掺加两种矿物纤维及未掺纤维的AC-16C沥青混合料进行了-10℃、5℃及20℃的小梁弯曲试验及小梁弯曲蠕变试验,并通过扫描电镜观测纤维沥青混合料的微观形貌,分析矿物纤维对沥青混合料的低温抗裂性能的影响及其增强机理。试验结果表明,掺加矿物纤维提高了沥青混合料的弯拉强度、弯拉应变及弯曲蠕变速率,特别是有效的改善了-10℃条件下沥青混合料的韧性,从而提高沥青混合料的低温抗裂性能;纤维的加入,增加了结构沥青的比例,可长时间的维持其粘弹性,纤维的咬合效应对沥青基体裂纹扩展起到阻滞作用。  相似文献   

14.
碳纤维是"外柔内刚"的新一代增强纤维。采用锥入度试验、低温延度试验和动态剪切流变试验,分析不同掺量和不同长度碳纤维条件下沥青胶浆的抗剪强度、低温性能和高温流变特性。结果表明:掺入碳纤维沥青胶浆抗剪切性能显著增强;随着纤维掺量增大、纤维长度增加,沥青胶浆抗剪强度提高,但其低温延度有所降低;碳纤维能显著提高沥青胶浆高温抗车辙性能,其对沥青的稳定与增强作用是主要原因。  相似文献   

15.
基于AC-13C连续密级配,通过冻融劈裂试验,研究了不同浓度盐溶液下,0.1%~0.3%掺量情况时聚酯纤维与玄武岩短切纤维对沥青混合料水稳定性的影响情况。研究表明:纤维对沥青混合料的水稳定性具有改善作用,随着聚酯纤维与玄武岩短切纤维掺量的增加,不同盐度环境下沥青混合料的冻融劈裂抗拉强度值先增大后降低,其中在掺量为0.2%时取得最大值。同等条件下,玄武岩短切纤维对沥青混合料水稳定性的改善优于聚酯纤维;随着盐浓度的增加,不同纤维掺量的沥青混合料冻融前后劈裂抗拉强度及强度比均出现下降,但是较之普通沥青混合料,掺加纤维的沥青混合料其抗水性较好。  相似文献   

16.
蒋应军  张宇  纪小平 《公路》2021,(3):277-283
通过室内试验研究了纤维对嵌挤骨架密实沥青混合料(SISG)疲劳性能的影响,应用威布尔分布建立疲劳方程,并与规范级配沥青混合料(GF)疲劳性能进行了对比。研究结果表明,与规范级配沥青混合料相比,SISG沥青混合料疲劳寿命最少提升17%;与不掺纤维SISG级配沥青混合料相比,在最佳掺量下掺木质素纤维、矿物纤维和聚酯纤维的SISG沥青混合料的疲劳寿命最少分别可提升2%、32%、48%。  相似文献   

17.
对掺木质素纤维、聚酯纤维、矿物纤维的三种玛蹄脂和SMA混合料的高、低温性能进行对比研究,并结合经济性分析,对比不同纤维的技术经济性能。采用50℃锥入度试验和5℃弯曲蠕变试验评价纤维玛蹄脂的高温和低温性能,车辙试验和低温弯曲试验评价混合料的高温和低温性能。结果表明:木质素纤维玛蹄脂的高温性能最优、低温性能最差,矿物纤维玛蹄脂的低温性能最优、高温性能居中,聚酯纤维玛蹄脂的高温性能最差、低温性能居中;3种SMA混合料的动稳定度和低温性能的对比规律为矿物纤维﹥木质素纤维﹥聚酯纤维;矿物纤维和絮状木质素纤维成本低且接近,而聚酯纤维的价格最高。  相似文献   

18.
《公路》2021,(4)
为掌握多聚磷酸(PPA)改性沥青胶浆性能,制备不同PPA掺量和粉胶比沥青胶浆,采用锥入度、动态剪切流变(DSR)和弯曲梁流变(BBR)试验,分别对其抗剪强度、高温性能和低温性能进行研究。结果表明:PPA改性沥青胶浆抗剪强度随PPA掺量和粉胶比的增加而增加,其中PPA掺量超过1.5%后增加速率降低,粉胶比超过1.0后增加速率提高;随着PPA掺量的增加,沥青胶浆高温抗变形能力增强,弹性成分比例提高,高温性能温度敏感性降低,而粉胶比增加时高温抗变形能力增强,弹性成分比例和高温性能温度敏感性基本不变;PPA改性沥青胶浆低温性能随PPA掺量的增加而提高,随粉胶比的增加而降低,但试验温度降低到-12℃及以下时两者效应均被弱化,尤其对PPA掺量表现明显。  相似文献   

19.
采用重复蠕变试验,利用Burgers模型对各沥青胶浆的蠕变过程进行模拟,从胶浆的蠕变劲度黏性成分Gv、累积应变γacc和蠕变柔量等方面分析了不同阻燃沥青胶浆的高温性能表现.结果表明:纤维和复合阻燃剂的加入均会增大阻燃沥青胶浆的Gv并降低γacc,3种复配比例的阻燃沥青胶浆中M-FR1和M-FR2的Gv值相等且最大;而M-FR1沥青胶浆的γacc最小;其次是M-FR2.这两种阻燃沥青胶浆高温性能均要优于常规掺量下的木质素纤维沥青胶浆.蠕变柔量分析结果表明,M-FR2阻燃沥青胶浆的瞬时弹性变形柔量JE和延迟弹性变形柔量JC占总柔量的百分比之和最大,高温抗变形能力最强.综合各阻燃沥青胶浆的蠕变力学特性,推荐复合阻燃材料的最优复配比例为15%矿物纤维+6%复合阻燃剂(即M-FR2).  相似文献   

20.
为了简化一种铺面用新型砖砌块——再生沥青砖的配比优化设计过程,采用正交试验方法,通过极差分析和方差分析研究了再生沥青砖的胶结料掺量、新集料替代比例和木质素纤维掺量对其抗压强度、冻融强度比和棱角最大破损尺寸影响的显著性。结果表明:3种外掺料掺量对冻融强度比和棱角最大破损尺寸影响均较小,木质素纤维掺量对抗压强度影响显著,而胶结料掺量和新集料替代比例对抗压强度影响很小。因此,再生沥青砖配比优化设计中需考虑木质素纤维掺量的影响,而胶结料掺量和新集料替代比例的影响几乎可不予考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号