首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a role for vertical migration in stratified coastal water, where the swimming speed is generally significantly less than the typical turbulent fluctuations in a tidally-mixed bottom layer. In our modelling approach we use a k- turbulence model to describe the physical forcing, a Lagrangian random walk model to describe the vertical displacement of individual cells in response to turbulence and due to cell motility, and a phytoplankton growth model to direct the swimming behaviour of the phytoplankton according to their light and nutrient requirements. The model results show how the cells form a stable subsurface chlorophyll maximum (SCM) at the base of the thermocline where episodic tidal turbulence causes erosion of part of the SCM biomass into the bottom mixed layer (BML). We then focus on the question of whether an ability to swim (weakly, compared to typical bottom layer turbulent intensities) provides any advantage by allowing return to the SCM. Our results show that tidal turbulence in the BML helps both motile and neutrally-buoyant cells by periodically pushing them into the base of the thermocline. Motile cells then have the advantage that they can swim further into the thermocline towards higher light which also reduces the likelihood of being re-mixed back into the BML.  相似文献   

2.
The air–sea CO2 exchange is primarily determined by the boundary-layer processes in the near-surface layer of the ocean since it is a water-side limited gas. As a consequence, the interfacial component of the CO2 transfer velocity can be linked to parameters of turbulence in the near-surface layer of the ocean. The development of remote sensing techniques provides a possibility to quantify the dissipation of the turbulent kinetic energy in the near-surface layer of the ocean and the air–sea CO2 transfer velocity on a global scale. In this work, the dissipation rate of the turbulent kinetic energy in the near-surface layer of the ocean and its patchiness has been linked to the air–sea CO2 transfer velocity with a boundary-layer type model. Field observations of upper ocean turbulence, laboratory studies, and the direct CO2 flux measurements are used to validate the model. The model is then forced with the TOPEX POSEIDON wind speed and significant wave height to demonstrate its applicability for estimating the distribution of the near-surface turbulence dissipation rate and gas transfer velocity for an extended (decadal) time period. A future version of this remote sensing algorithm will incorporate directional wind/wave data being available from QUIKSCAT, a now-cast wave model, and satellite heat fluxes. The inclusion of microwave imagery from the Special Sensor Microwave Imager (SSM/I) and the Synthetic Aperture Radar (SAR) will provide additional information on the fractional whitecap coverage and sea surface turbulence patchiness.  相似文献   

3.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

4.
5.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

6.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

7.
The nutrient distribution in the Northeast Water Polynya (NEW) was investigated intensively between the end of May and the beginning of August 1993 during the R/V Polarstern cruise ARK IX. The major characteristics were low initial nitrate concentrations (ca. 4 μM) in the surface mixed layer of the East Greenland Shelf Water, accompanied by high silicate values (ca. 10–14 μM). These concentrations were not reduced by phytoplankton growth. Silicate was rather homogeneously distributed in the entire water column, whereas nitrate increased continuously with depth to about 13 μM. Phosphate concentrations were about 1.1 μM and had a similar distribution to that of silicate. During the course of the summer, nutrients became depleted, and nitrate was exhausted in large parts of the NEW. Silicate was reduced to values of less than 2 μM at some stations which implies that diatom growth continued despite nitrate depletion, ammonium serving as a nitrogen source. The polynya is fertilised by water with the initial nutrient concentrations downstream of the Norske Øer Ice Shelf. This process continuously supplies nutrients to the surface throughout the year and these are transported northward by the anticyclonic surface circulation following the topography of the trough system. The northern boundary of this tongue of relatively nutrient-rich water is controlled by the uptake of nutrients by phytoplankton in summer. Its extemsion is variable due to interactions between biological processes, circulation and ice cover. In the Ob Bank region the nutrient distribution can be altered by the inflow of Polar Water from the north when strong northerly winds prevail as happened during the first part of the study.  相似文献   

8.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

9.
At Terra Nova Bay, the scallop Adamussium colbecki (Smith, 1902) characterises the soft and hard bottoms from 20 to 80 m depth, constituting large beds and reaching high values of density (50–60 individuals/m2) and biomass (120 g/m2 DW soft tissues). To assess its role in the organic matter recycling in the coastal ecosystem, its filtering and biodeposition rates were evaluated in laboratory experiments during the austral summer 1993/94. Filtration rates, measured in a flow-through system, were calculated from the difference in particulate organic carbon (POC), nitrogen (PON) and chlorophyll-a (Chl-a) concentration in inflow and outflow water. Experiments were performed using natural sea water with POC, PON and Chl-a concentrations of about 450 μg/l, 90 μg/l and 2 μg/l, respectively. The biodeposition rate and the biochemical composition of the biodeposits were studied in order to detect how the organic matter is transformed through feeding activity of A. colbecki. At +1°C temperature, the average filtering rate was about 1 l h−1 g−1 (DW soft tissues) in specimens ranging in body mass from 2 to 3 g (DW soft tissues) and 6–7 cm long. The biodeposition rate in 3–8 cm long specimens, ranging from 0.4 to 5.7 g (DW soft tissues), was about 5.65 mg DW/g DW/day, leading to an estimate of Corg flux, through biodeposition by A. colbecki, of about 21 mg C m−2 day−1 at in situ conditions. Comparison between the biochemical composition of seston and biodeposits shows a decrease of the labile compounds, of the Chl-a/phaeopigments ratio in the biodeposits. The recorded C/N ratio decrease suggests a microbial colonisation in the biodeposits. This study suggests that Adamussium colbecki plays an important role in coupling the material fluxes from the water column to the sea bed, processing about 14% of total Carbon flux from the water column to the sediments, with an assimilation efficiency of 36%.  相似文献   

10.
Few marine phytoplankton have heteromorphic life cycles and also often dominate the ecosystems in which they occur. The class Prymnesiophyceae contains a notable exception: the genus Phaeocystis includes three species that form gelatinous colonies but also occur within their ranges as solitary cells. Phaeocystis antarctica and P. pouchetii are exclusively high latitude taxa, and are notable for regionally tremendous blooms of the colony stage. P. globosa occurs circumglobally, yet its colony blooms primarily are confined to colder waters within its range. Three additional species are warm water forms that have been reported only as solitary cells or loose aggregations that bear little resemblance to the organized colonies of the other taxa. Interpretation of existing data indicates that resource availability (light, temperature and nutrients) by itself is not sufficient to explain this distinction between cold-water colony-forming taxa and warm water solitary cell taxa, nor why colony development in P. globosa is essentially a spatially restricted phenomenon within a much broader geographic range. Colony development by P. globosa in situ has been observed at temperatures ≥20 °C, but only rarely and generally under conditions of seasonally or anthropogenically elevated nutrient supply. Data presented here demonstrate colony development at 20–22 °C in natural plankton communities from oligotrophic waters that were pre-screened through 63 μm mesh (i.e. lacking mesozooplankton and large microzooplankton), but not in unscreened communities containing microzooplankton and >63 μm zooplankton. Reduction of colony proliferation at higher temperatures by mesozooplankton grazing remains as an intriguing possibility that is consistent with available evidence to help explain differences in latitudinal extent of in situ colony development. These data are interpreted within a theoretical framework regarding the potential advantages and disadvantages of the two life cycle stages.  相似文献   

11.
CTD-data obtained in the Azores Frontal Zone using a towed undulating vehicle are analyzed to study the relationship between characteristics of intrusions and mean parameters of the thermohaline field. A self-similar dependence between intrusion intensity and hydrological parameters is obtained. The most well-founded interpretation of the empirical dependence is as follows: (a) the main source supporting intrusive layering is the salt finger convection; (b) the abrupt decrease of intrusion intensity with the reduction of geostrophic Richardson number obtained from the analysis is explained by the beginning of turbulence when salt fingers do not work any longer, so the “driving force” for intrusive motion disappears. These results are consistent with the conclusions of the paper [Kuzmina N.P., Rodionov V.B., 1992. About the influence of baroclinicity upon generation of the thermohaline intrusions in the oceanic frontal zones. Izvestiya Akad. Nauk SSSR, Atmosperic and Oceanic Physics 28 (10–11), 1077–1086]. These conclusions imply that there are three main mechanisms of intrusive layering at oceanic fronts, namely the 2D baroclinic instability of geostrophic flow, the vertical shear instability and the thermohaline instability where the driving source of intrusive motion is double diffusive convection. The baroclinic and thermohaline instabilities can generate intrusions of large vertical scale, while vertical shear instability usually gives rise to thin turbulent layers. Turbulence in these thin layers can prevent salt finger convection and thus destroy the energy source of the intrusive motion conditioned by thermoclinicity. Therefore, the baroclinicity plays two parts in the processes of the intrusive layering: (1) it prevents double-diffusion interleaving by means of turbulence, and (2) it generates intrusions due to the 2D baroclinic instability of geostrophic current. Using features of thermohaline interleaving as a specific tracer of turbulent mixing, we have estimated turbulent mixing coefficient as ktRi−0.8 (Ri>1), where Ri is the geostrophic Richardson number. Application of the proposed approach to other frontal zones is discussed.  相似文献   

12.
Geophysical turbulence is strongly affected by the variation of the Coriolis parameter with latitude. This variation results in the so-called β-effect, which forces energy from small-scales to be transferred preferentially into zonal motions. This effect results in the formation of narrow jet-like zonal flows that dominate the dynamics and act as transport barriers. Here, laboratory experiments are used to reproduce this effect in decaying turbulent flows. An electromagnetic cell is used to generate an initial field of vorticity in a rotating tank. Under conditions of quasi-geostrophic flow, the β-effect is produced by depth variation of the flow instead of variation of the Coriolis parameter. The effects of changing the container geometry and the overall fluid depth on the production of jets are investigated. The results suggest that this laboratory configuration can be used to model jet formation in the oceans and that increasing fluid depth is a practical way to decrease viscous effects.  相似文献   

13.
We describe application of a new apparatus that permits simultaneous detailed observations of plankton behavior and turbulent velocities. We are able to acquire 3D trajectories amenable to statistical analyses for comparisons of copepod responses to well-quantified turbulence intensities that match those found in the coastal ocean environment. The turbulence characteristics consist of nearly isotropic and homogeneous velocity fluctuation statistics in the observation region. In the apparatus, three species of copepods, Acartia hudsonica, Temora longicornis, and Calanus finmarchicus were exposed separately to stagnant water plus four sequentially increasing levels of turbulence intensity. Copepod kinematics were quantified via several measures, including transport speed, motility number, net-to-gross displacement ratio, number of escape events, and number of animals phototactically aggregating per minute. The results suggest that these copepods could control their position and movements at low turbulence intensity. At higher turbulence intensity, the copepods movement was dominated by the water motion, although species-specific modifications due to size and swimming mode of the copepod influenced the results. Several trends support a dome-shaped variation of copepod kinematics with increasing turbulence. These species-specific trends and threshold quantities provide a data set for future comparative analyses of copepod responses to turbulence of varying duration as well as intensity.  相似文献   

14.
A combined observational-modeling study was conducted to investigate turbulence mixing, and the relation to surface forcing, in the surface boundary layer (SBL) of a tropical, high-altitude, freshwater reservoir. A suite of vertical profiles of temperature microstructure, collected at three different stations of one-day duration each, provided estimates of dissipation rates of turbulence kinetic energy, , and temperature variance, χ. Numerical simulations of and χ, using state-of-the-art, public domain, two-equation turbulence closure models, compared favorably with the observations and reproduced the dynamics of daytime wind mixing as well as the vertical and temporal turbulence structure during nighttime convective conditions.Two independent estimates of vertical eddy diffusivities in the stably stratified (daytime) SBL, computed from the microstructure measurements, agreed closely, and the near surface heat and buoyancy fluxes, computed from the diffusivities, were similar to those computed independently from surface meteorology. Model generated eddy diffusivities agreed closely with the observed values, except those generated by K profile parameterization (KPP) model simulations. The good agreement provides confidence that nutrient fluxes in the SBL may be accurately computed from the models when forced with regularly measured surface meteorological parameters. The consequences are important for estimation of daily primary productivity rates in the euphotic zone and the ability to predict algal blooms such as those observed in the present reservoir.  相似文献   

15.
Dynamics of inorganic nutrient species in the Bohai seawaters   总被引:3,自引:0,他引:3  
Within the frame of a Sino-German Joint Research Program, two cruises of “R/V Dong Fang Hong 2” were carried out in September–October 1998 and April–May 1999, respectively, to understand the dynamics of nutrients in the Bohai. Nutrient species (NO3, NO2, NH4+, PO43− and SiO32−) are determined colorimetrically on board for five anchor and 30 grid stations. In situ incubation experiments are performed to determine planktonic nutrient uptake and benthic exchange flux. Nutrient concentrations display short-term variability and seasonal change in the Bohai, with higher levels in shallow coastal waters than in the Central Bohai. The influence of riverine discharge on nutrient levels can be seen from salinity isopleths, nutrient distribution and species ratios. Near-bottom (nb) waters have similar nutrient concentrations as to the surface waters in the Central Bohai, whereas stratification takes place in the Bohai Strait and North Yellow Sea. In situ incubation experiments provide evidence that the uptake ratio (i.e. N, P) by phytoplankton is proportional to the ratios among nutrient species in ambient waters. Based on the data of this study and previously publications, a preliminary estimate of nutrient budgets via riverine input and atmospheric deposition is established. The results indicate that atmospheric deposition gains importance over rivers in delivering nutrients into the Bohai and sustain the new production, following recent decrease in riverine inflow caused by drought periods in North China and damming practices. A historical review of nutrient data indicates that concentrations of nitrogen increase and phosphorus and silica decrease in the Central Bohai over last 40 years. This potentially has an important influence on the health of ecosystem in Bohai (e.g. food web and community structure), though further study is needed to examine the scenario in more detail.  相似文献   

16.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   

17.
Microphytobenthos biomass has been measured at several coastal sites on the SE of the main island of the Kerguelen Archipelago (Indian Ocean), during several austral summers (1985–1992), using a conventional fluorometric method. Heterogeneity tests, conducted on two different intertidal sites (Port-Aux-Français, PAF; and Port-Raymond, PRA), showed low standard deviations, whereas the mean concentrations were highly different. Pigment concentrations showed a high variability related to the characteristics of the sediments: from low biomass in coarse intertidal sand, submitted to intense scouring (0.32±0.31 μg Chl a g−1 dw, 0.29±0.14 μg Phaeo g−1 dw) to high biomass in intertidal muddy sand in sheltered areas, particularly along estuaries (54 μg Chl a, 15 μg Phaeo g−1 dw at Korrigan). The subtidal muddy sediments under a Macrocystis pyrifera (Linné) and Durvillaea antarctica (Chamisso in Choris) belt exhibited high concentrations in phaeopigment (Phaeo) (up to 136±83 μg g−1 dw; PRA), while the concentration of chlorophyll a (Chl a) was relatively low. The dense macroalgal canopy supports an important epiphytic diatom biomass (mainly the genera Cocconeis Ehrenberg and Grammatophora Ehrenberg), which is sedimenting after degradation and is in part responsible of the high levels of Phaeo in all sediments. Macroalgal debris were observed, but diatom frustules were dominant in most surficial subtidal sediments. A circatidal mud, in the Morbihan Bay, made of a sponge spicule mat (50 m deep; 4.96 μg Chl a g−1 dw), showed a very low Chl a/Phaeo ratio (0.1), while it reached up to 6 in intertidal sand. Surprisingly, a penguin rookery beach, at the east side of Courbet Peninsula, was characterized by a very low biomass (0.07±0.04 μg Chl a g−1 dw), while it was nutrient enriched, particularly with nitrates.In comparison with the data at the similar latitude, but in temperate regions from the Northern Hemisphere, the microphytobenthos biomass, recorded at Kerguelen's Land, exhibited relatively high pigment concentrations, particularly the Phaeo, and supported a dense and diversified subtidal macrofauna composed of polychaetes (particularly Thelepus extensus Hutchings and Glasby), sea urchins, mytillids and gammarids. The exuberant macroalgal canopy, coastal indentations and low tidal amplitude must be in part responsible of these large benthic primary and secondary biomasses.  相似文献   

18.
Individual based numerical simulations of the copepod, Oithona davisae, feeding on motile prey, Oxyrrhis marina, under variable turbulent conditions are performed. These simulations correspond to laboratory observations conducted by Saiz et al. [Saiz, E., Calbet, A., and Broglio, E., 2003. Effects of small-scale turbulence on copepods: the case of Oithona Davisae. Limnol. Oceanogr., 48:1304–1311.].The flow field in the simulation is reconstructed by a kinematic simulation whose characteristic scales are derived from the grid mesh and the dissipation rates of the laboratory experiments. The kinematic simulation provides a simplified model, which while not fully realistic, captures the basic relevant feature of turbulence. A hop and sink swimming behaviour is prescribed for O. davisae, while O. marina moves along helical paths with random changes of directions.Three possible effects are tested: the existence of a time threshold in the duration of the contacts between predator and prey, a progressive reduction of the perceptive distance with increasing turbulence level and an abrupt reduction in feeding of O. davisae when the flow speed, in relation to the copepod position, is higher than a prescribed threshold. This last approach introduces an intermittency in the feeding which depends on the variations of velocity both in space and time within the numerical box.The introduction of the time threshold causes a dome-shaped relationship between the simulated enhancement factor and the dissipation rate, while with the other two effects, a monotonic decrease in the enhancement factor is observed, with values reasonably close to the ones observed in the laboratory experiment. In all the cases, the use of realistic values of biological parameters (e.g. swimming behaviour) reproduces response curves in the range of the observations.  相似文献   

19.
The water mass, circulation and chemical properties of the Cilician Basin, the northeastern Levantine Sea, are described on the basis of three hydrographic cruises performed during May 1997 (spring), July 1998 (summer) and October 2003 (autumn). The hydrographic data reveal the presence of Levantine Surface Water (LSW) and Modified Atlantic Water (MAW) within the upper 90 m layer, Levantine Intermediate Water (LIW) between 90 and 250 m, and Transitional Mediterranean Water (TMW) further below. The temporal variability of the circulation system is manifested by a change in shape, size and intensity of eddies as well as the pathways of the Lattakia Basin coastal current system. The nutrient concentrations varied between nitrate + nitrite = 0.16–0.31 μM, phosphate = 0.02–0.03 μM and silicate = 0.95–1.2 μM for the surface layer during sampling periods. Dissolved nutrient concentrations in the Transitional Mediterranean Water were: 2.1–5.3 μM for NO3 + NO2, 0.10–0.21 μM for PO4 and 5.7–10 μM for Si. The molar ratios of nitrate to phosphate in the water column range between 5 and 20 in the surface layer and reach up to a value of 45 at the top of the nutricline at the depths of 29.05 kg/m3 isopycnal surface for most of the year. Below the nutricline the N / P ratios retain the values around 24–28.  相似文献   

20.
The separation in Southern Ocean provinces of silicate excess at nitrate exhaustion and of nitrate excess at silicate exhaustion was already introduced by Kamykowski and Zentara (Kamykowski, D., Zentara, S.J., 1985. Nitrate and silicic acid in the world ocean: patterns and processes. Mar. Ecol. Prog. Ser. 26, 47–59; and Kamykowski, D., Zentara, S.J., 1989. Circumpolar plant nutrient covariation in the Southern Ocean: patterns and processes. Mar. Ecol. Prog. Ser. 58, 101–111) and our investigations of the silicate to nitrate uptake ratios confirm the earlier distinction. Oligotrophic antarctic waters mainly exhibit proportionally higher silicate removal what induces a potential for nitrate excess. The nitrogen uptake regime of such areas is characterised by low absolute as well as specific nitrate uptake rates throughout. Maximal values did not exceed 0.15 μM d−1 and 0.005 h−1, respectively. Corresponding f-ratios ranged from 0.39 to 0.86. This scenario contrasts strikingly to the more fertile ice edge areas. They showed a drastic but short vernal increase in nitrate uptake. Absolute uptake rates reached a maximum value of 2.18 μM d−1 whereas the maximal specific uptake rate was 0.063 h−1. In addition to an optimal physical environment for bloom development, accumulation of ammonium stimulated nitrate uptake in a direct or indirect way. Since ammonium build-up in surface waters traces enhanced remineralisation, release of other essential compounds during degradation of organic matter might have been the main trigger. This peak nitrate utilisation during early spring led to the observed potential for silicate excess. With increasing seasonal maturity the nitrate uptake became inhibited by the presence of enhanced ammonium availability (up to 8% of the inorganic nitrogen pool), however, and after a short period of intensive nitrate consumption the uptake rates drop to very low levels, which are comparable to the ones observed in the area of nitrate excess at silicate exhaustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号