首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Confronted with accidents in a shallow?buried weak tunnel using the bench excavation method,such as great subsidence and cracks in the ground surface as well as those in the preliminary support,a double downside drifts construction method was presented The drifts were used to detect geological conditions and reinforce the lower parts of the tunnel Its construction procedures and load transiting mechanism were then described Its Construction behavior was also studied by numerical simulation using software MIDAS The results show that (1) double-side drifts can improve tunnel load,the key construction step is arch ring excavation and core soil is good to keep tunnel steady; (2) weak parts mainly l ocate at wall foot of drifts,wall foot and crown foot of tunnel,and the connections; (3) reinforcement of soil under the drifts has no apparent effect on improving rock deformation and support load Advice on construction was proposed that main parts to be reinforced are drifts (its foot depth,connection parts with tunnel,and its corners) and core soil should be kept if rock is unsteady and needs reinforcing  相似文献   

2.
To analyze influencing factors and evaluation method of low-temperature performance of porous asphalt mixture,first,three kinds of modified binder were chosen as original,thin film aging and pressure aging samples for customary index test and bending beam rheometer (BBR) test at -12 ℃ to evaluate low-temperature performance of these modified binders Then,evaluation of the low-temperature anti?cracking performance of different kinds of porous asphalt mixture was made by thermal stress restrained sample test (TSRST) At the sam e time,the result of abovementioned TSRST were compared with the TSRST result of  samples of the porous asphalt mixtures after long?term aging to evaluate the influence of  aging on low-temperature performance of porous asphalt mixtures The results show that (1) TSRST result of porous asphalt mixtures coincides with creep stiffnesses of BBR test of modified binders; (2) the fracture temperatures of the porous asphalt mixtures increase and their fracture stresses decrease after aging; (3) the fracture stresses of porous asphalt mixtures are just one-third of those of dense?gradation asphalt mixtures while the fracture temperatures almost the same,which indicates that their low?temperature performances are almost the same  相似文献   

3.
The effect of damaged transverse connection of diaphragm beams on the bearing capacity of prefabricated concrete T?beam bridges was studied through model experiment and finite element analysis On the basis of standard drawing of 16 m T?beam bridge,a refabricated concrete T?beam bridge model on the scale of 1 to 4 was designed by using of welding steel plate The impacts of different condition on transverse load distribution were discussed The result shows that (1) flange connection has little impact on the transverse load distribution when the diaphragm beams are connected reliably; (2) the damage of transverse connections has much influence on the transverse load distribution of adjacent girders but it has little effect on the girders apart from them; (3) if a certain transverse connection is damaged entirely except for that of the end diaphragm beams,the load distribution would not degenerate to the conditions determined by the flange connection because of the advantageous effects of the other diaphragm beams; (4) only when the bilateral diaphragms of one beam are damaged at the same time,the lateral load distribution will degenerate to the conditions determined by the flange connection  相似文献   

4.
In order to assess temperature field in microwave heating for recycling asphalt pavements,a 2D mathematic heat transfer model was developed based on Fourier heat transfer theory The microwave internal heat?generation was researched by using surface field of pyramidal horn replacing approximate radiation field In addition,the boundary conditions were built and normalization processing was implemented The control volume based finite differential method (CV-BDM) was used to establish the implicit discrete scheme of the conservation equations,and the numerical value simulation was employed By continuous or intermittent  radiation heating technique,a microwave heating experimental system at 2 145 GHz was carried out to investigate temperature variation characteristics of asphalt pavements along with heating time The result shows that (1) the increase of temperature of asphalt mixture during microwave heating is obviously nonlinear,the temperature rises slowly in the initial stage of the heating but increases rapidly in the late heating period; (2) the temperature distribution is non-uniform that the temperature in central area of the surface is higher while it is lower on edge; (3) the uniformity of temperature within asphalt mixtures can be improved by using intermittent heating technique,and the heating time must be reasonable The simulation results are in preferable agreement with the experiment  相似文献   

5.
To cope with the fatigue cracking occurred to the asphalt mixture on steel deck avement,it is put forward that the fatigue life of asphalt mixture can be improved by reducing the ailure energy of each hysteresis loop of asphalt mixture according to the cumulative dissipated energy and hysteresis loop theory in the principle of viscoelasticity for asphalt mixture Based on this principle,a kind of modified asphalt with high elasticity was developed,and its high and low temperature performances and fatigue performances were also tested The result shows that (1) low temperature deformability of the high?elastic modified asphalt mixture has remarkably improved and low temperature bending strain of girder at -10 ℃ is above 10 000 με; (2) the fatigue life of modified asphalt mixture with high elasticity has greatly improved by 4?point bending beam test compared with common modified asphalt mixture The fatigue life at 1 000 με deformability is about 19 million times which is about 20 times longer than that of ordinary asphalt mixture  相似文献   

6.
he prestressed concrete skewed box girder with transversely segmental construction was brought out on the basis of the need in the engineering,both model experiments and FE analysis of the presented construction and the beam box with integral construction were carried out With the analysis of the obtained data by mathematical statistics,comparison of table and graph,and the corresponding FE analysis,the difference of mechanical performances of both constructions was analyzed under various experimental loading cases The results show that (1) the deflection of the presented construction is about 53% larger than that of the beam box with integral construction,the longitudinal strain is 135% larger than that of the latter,and the longitudinal strain of the cast concrete is 59% as large as that of the same area at the beam box with integral construction before concrete cracking; (2) there exists stress redistribution in the cross-section of presented construction,which can restrain the tensional distortion of the wet?joint,and the value of the stress cannot be computed by the current FE program  相似文献   

7.
Mori-Tanaka equivalent inclusion micromechanics theory was employed to investigate the viscoelasticity of asphalt mixture Asphalt mixture was regarded as composites which treated coarse aggregate as a rigid inclusion and the mixture of fine aggregate,filler and binder as viscoelastic matrix The constitutive relations of coarse aggregate inclusion and fine aggregate-filler-binder matrix were converted into elastic problems by Laplace transformation Then the Mori-Tanaka equivalent inclusion and average theory were used to deduce the  viscoelastic performance of asphalt mixture based on that of asphalt mortar in  Laplace space The result shows that (1) coarse aggregate inclusion can enhance the viscoelastic performance of fine aggregate?filler?binder matrix and viscoelastic constitutive relation of asphalt mixtures can be expressed as the product of an enhancement coefficient of coarse aggregate and the viscoelastic constitutive relation of fine aggregate?filler?binder matrix; (2) the viscoelasticity of the complex asphalt mixture can be predicted from the viscoelasticity of the homogeneous fine aggregate?filler?binder matrix by using the nhancement coefficient; (3) the enhancement coefficient is higher than 10 and it rises with increasing of coarse aggregates' volumetric fraction or Poisson's ratio of fine aggregate-filler-binder matrix but the effect of the former is more important than that of the latter  相似文献   

8.
Impacts on asphalt mixture's high temperature performance with PR series additives added by means of rutting test and Repeated Shear Test (Constant Height) (RSCH) were investigated The analytic results of the two tests show that (1) rutting test is not suitable for the high temperature performance evaluation of asphalt mixture with PR series additives added for the reason of the conflict between dynamic stability and rut depth; (2) the results of RSCH,such as K1,K2,N and γ,show very well consistency which is suitable  for the high temperature performance evaluation of asphalt mixture with PR series additives  added The results of RSCH show that asphalt mixture with PR PLAST S (PRS)  added has the best performance,the PR FLEX MODULE (PRM) one is the next and t he original one is the worst for the high temperature anti?shear performance  相似文献   

9.
In order to study the fatigue behavior of RC beams strengthened with High Performance Ferrocement Laminates (HPFL) under overloading conditions,static and fatigue experiments were conducted on two control beams and nine strengthened beams The failure mode,fatigue life,deflection and material strain under overloading conditions were analyzed The result shows that (1) fatigue failure of the beams subjected to overload starts with steel rupture at the bottom and the fatigue life is only between 327 000 and 668 000 while fatigue  life of strengthened beams is greater than two million times in case of not overload ing; (2) compared with the control specimen,the fatigue life of strengthened beams is obvio usly extended and increased with the increase of steel mesh consumption; (3) after the same number of cycles,the deflections,the strains of concrete and steels of four strengthened beams are lower than those of the control specimen Debonding at the interface of HPFL and concrete is not observed because of shear pins planted at the end of the beams  相似文献   

10.
Stresses of pavement with flexible base of LSAM-30,ATPB-30 and AC-30I at the most adverse point under the function of traffic load and temperature load as well as the coupling of them were calculated and compared by finite element method. The result indicates that flexible bases of LSAM?30 and ATPB?30 are more effective in the prevention of reflection crack Because of the great volume of coarse aggregate and large maximum nominal particle?size,the LSAM-30 thermal conductivity is greater,and the temperature shrinking coefficient is lower as well as the modulus of resilience,which could reduce the emperature gradient among the structure layers effectively and then minish the thermal stress At the  same time,the adequate flexibility performance of the LSAM may also absorb strain energy at the crack of the semi?rigid subbase sufficiently As a result,itpresented preferable reflection crack resistance A case study was conducted to do comparative analysis of anti?cracking performance of LSAM-30,ATPB-30 and AC-30I flexible bases A long?term follow?up observation of test roads with the three bases shows that the pavement with LSMA base is in good condition and no sign of crack found while pavements with ATPB?30 and AC?30I flexible bases have varying degrees of crack LSMA flexible base has an obvious performance of anti-crack  相似文献   

11.
In the light of semi?rigid material as base course for perpetual asphalt pavement,the bearing capacity and fatigue life of asphalt pavement with semi-rigid base cause and different asphalt layer's thickness were computed with BISAR30 after chosen typical pavement The impact of thickened layer on the stress of the semi?rigid base,the dry shrinkage and temperature shrinkages of the material were analyzed,and its adaptability as base for perpetual pavement was studied The result shows that (1) under the same load,with thickening of the asphalt layer,the compressive stress on the top and the tensile stress at the bottom of the semi?rigid base decrease obviously and the fatigue life of  the base increases substantially; (2)the impact of temperature and humidity on the  semi-rigid base is remarkably weakened,which leads to the fractures,erosion and reflecting cracks of the semi?rigid base to be controlled effectively  相似文献   

12.
The large span transition section at Badaling Great Wall Station with a maximum excavation span of 32.7 m and an excavation area of 494.4 m2 is the traffic tunnel with the largest excavation span and excavation section area in the world, resulting in substantial construction difficulty and high safety risk. To ensure the construction safety of Badaling Great Wall Station, the support parameter design, a new excavation method, and the surrounding rock deformation control principle for tunnels with an ultra large section are studied. The study results show that: (1) According to the checking calculation, the support system had a safety factor of 1.16-2.46 during the construction period and 1.59-3.54 during the operation period, i.e., its engineering structure is safe and reliable. (2) The innovative triangle type excavation applied to the tunnel with an ultra large span and section has the advantages of a simple and clear method, safe and reliable structure, high applicability of mechanical equipment and high construction efficiency. (3) Depending on different surrounding rock classes and spans, the criteria for total deformation control of the large span transition section at Badaling Great Wall Station are as follows: in the case of class Ⅱ surrounding rock, the total settlement is 20-30 mm, and the total horizontal convergence is 15-20 mm; in the case of class Ⅲ surrounding rock, the total settlement is 30-40 mm, and the total horizontal convergence is 20-25 mm; in the case of class Ⅳ surrounding rock, the total settlement is 60-90 mm, and the total horizontal convergence is 40-55 mm; in the case of class Ⅴ surrounding rock, the total settlement is 130-190 mm, and the total horizontal convergence is 90-105 mm. (4) According to the numerical simulation, the innovative triangle type excavation method results in deformation that is mainly centralized in the tunnel arch making stage, accounting for approximately 95% of the total, followed by deformation in the side making stage, accounting for 4% of the total, with the smallest deformation only accounting for 1% in the inverted arch making stage.  相似文献   

13.
In order to deal with the technical problems of Shuangfeng Tunnel passing through water rich Tertiary sandy mudstone strata with long distance and big overburden, such as dewatering, advance reinforcement, structural design and construction method etc., reducing tunnel deformation, preventing water inrush, gushing mud and tunnel collapse, the technical route of "stereo exploration, pressure reduction by water releasing, pre grouting, supporting timely, overall monitoring" is established after the field test and data analysis. Methods of full dimensional exploration and water pressure reducing are proposed, which form the preceding reinforcing technology that are different between inside the excavation contour and outside the excavation contour. Support linings are constructed immediately after excavation of upper bench. Safety performance of tunnel structure is evaluated according to the monitoring results. The research is conducted based on Shuangfeng Tunnel and the study results are applied in the construction of the tunnel. Results indicate that it can make sense to control deformation and ensure safety by using methods of reducing pressure through full dimensional water release, adopting advance reinforcement measures that are different between inside the excavation contour and outside the excavation contour, proposing mini bench method during tunnel construction and supporting timely after excavation for tunnels passing through water rich Tertiary sandy mudstone strata.  相似文献   

14.
Tsinghuayuan Tunnel of Beijing Zhangjiakou High speed Railway is the first fully prefabricated high speed railway tunnel in China. The supporting structure, subrail structure, and subsidiary structure of Tsinghuayuan Tunnel are all prefabricated in the factory. The strength, deformation and stability of subrail structure are analyzed by numerical simulation method; a kind of three block type of subrail prefabricated structure is put forward according to prefabricated assembling technology; and the subrail space is used to ventilate and rescue under the stability condition. The connection between subrail structure and shield segment is the key to fully prefabricated assembling technology. By introducing the grouting technology and construction keys of subrail structure, the stress on subrail structure and shield segment can be balanced. The results can provide reference for similar projects in the future.  相似文献   

15.
杭州狭长软土基坑支护侧移规律与解析预测方法研究   总被引:1,自引:0,他引:1  
In order to reduce the influence of deep narrow foundation pit construction on adjacent properties in urban area in Hangzhou, the characteristics of the support wall lateral deflection are analyzed and the corresponding analytical prediction method is proposed. The support wall lateral deflections of the deep narrow foundation pits at Wenyi West Road, Qingchun Station, Qiutao Station, Xingtang Station and Qingnian Station in Hangzhou soft clay are monitored and compared with those of deep foundation pits in Zhejiang and deep narrow foundation pits in Shanghai, Taipei and Singapore. The results show that the maximum support wall lateral deflection of the foundation pit on Wenyi West Road, 0.20%He ~0.25%He, where He is the maximum excavation depth, is close to that in Shanghai(0.15%He~0.41% He), but is smaller than those in Zhejiang, Taipei and Singapore(0.27% He~0.62% He); which is related to the high tangential modulus of Hangzhou soil and small width of the foundation pit. The support wall lateral deflection of the narrow deep foundation pits in Hangzhou can be precisely predicted based on the representative stress strain relationship at site and the modified mobilisable strength design (MMSD) method.  相似文献   

16.
DING Hao  CHENG Liang  LI Ke 《隧道建设》2019,39(6):901-912
Construction of submerged floating tunnel (SFT) is one of the major solutions for fjord crossing projects and deep sea crossing projects in the future. Aimed to solve the key problems in SFT construction, the authors present an overview on the progress of the researches made in China and other countries in recent years on cross section of SFT, dynamic response of SFT segment structure, vortex induced vibration of anchor cable, testing technique and applicability of SFT, summarize the critical problems in the dynamic response research of SFT structures and make prospect on the trend of further SFT research. Conclusions are drawn as follow: (1) In the aspect of cross section design, SFT with ear shaped or elliptical cross section has good stability in the complex environment of flowing water, with factors comprehensively considered, such as cross section of SFT segment structures, buoyancy weight ratio and layout. (2) In the aspect of dynamic response of structures and anchor cables, the current research methods are mainly based on theoretical derivation and numerical simulation, and poorly rely on model based testing technique; therefore, it is necessary to perform model tests under combined loads from the environment, traffic and SFT, for mutual check between the theoretical analysis and numerical model. (3) In the aspect of applicability, it is necessary to build small SFT in feasible water conditions to make research on the physical SFT in the static waters, to identify problems and to lay a foundation technically for building large SFTs in the complex sea conditions.  相似文献   

17.
In order to resolve the challenges encountered in the construction of Gaoligongshan Tunnel such as soft rock deformation of inclined shafts, water drainage and protection of vertical shafts, TBM jam in crossing areas with adverse geology, solutions and key construction techniques are developed through theoretical analysis, field test, scheme optimization and staged review and summary. The performance results of field practice show that: (1)the goal of no damages and no replacement of the primary support can be achieved by adopting the comprehensive deformation prevention technique of "ring support early formation and quick closure", setting of proper excavation line curvature, and reinforcing of support; (2)the risk of vertical shaft flooding during construction in water rich weak granite can be greatly reduced by adopting the water control principle of "exploration for any excavation, plugging as the main method, and supplemented with drainage method" and the key pre grouting technique of S shaped deep boreholes; (3)the open type TBM can quickly and safely pass through the unfavorable mylonitic granite stratum by adopting the small pilot tunnel construction method, thus the fast and high efficiency construction performance of TBM can be fully utilized.  相似文献   

18.
LI Ning  LI Guoliang 《隧道建设》2018,38(3):481-493
Lanzhou Chongqing Railway is located in the uplift margin of the Tibetan Plateau, where the geological environment is very complicated and special. Based on numerical analysis and field tests, the physical and mechanical properties, micro structure, and complicated water related stability of the Tertiary sandstone are studied. A comprehensive dewatering system integrating deep surface wells and vacuum light well points in tunnel is used and the construction technique featured with advance reinforcement by horizontal jet grouting for the full face of aquiferous silty fine sand tunnels is invented to solve the problem of the Tertiary quick sand. In addition, the classification method for deformation potentiality in design and dynamic adjustment in construction of tunnels in high geostress soft rock is established, the deformation control technology combining active stress release and passive control according to the deformation mechanism is developed, an automatic real time monitoring system for operation is invented, and a complete technological system of design, construction, and operation management of soft rock tunnels is built. Moreover, the TBM equipment parameter design principles are put forward, the parallel lining and multi stage belt conveyor mucking system is researched, the phased ventilation technology is invented and thus the problem of safe and fast long distance construction by large diameter TBMs is solved. The technological achievements have filled in gaps and facilitated development of the tunnel construction technology.  相似文献   

19.
The GIL chamber in the utility tunnel under Tanxinpei Road in Wuhan is an ultra long closed structure. Heat exhaust ventilation is the controlling problem in engineering design for the project, especially the heat transfer between the tunnel and the surrounding soil in the long term. A one dimensional model for the GIL chamber is established by using the IDA tunnel simulation software to analyze the short term and long term heat exhaust, respectively. The short term heat exhaust is analyzed for the typical climate of summer/winter/transitional seasons and the long term analysis is carried out under the seasonal changes in 1 year/ 10 years/ 30 years. The short term analysis results indicate that the slope of the utility tunnel and the temperature gradient lead to lower ventilation efficiency in certain areas. The long term analysis results show that the air temperature in the GIL chamber and the wall temperature rise most pronouncedly during the first 5-6 years of operation and remain stable for the remaining time within 30 years. It also is found that around 10%-40% of the heat is released to the surrounding soil. A three dimensional model of the GIL chamber is established using the fluid mechanics based program, OpenFOAM, for 3D simulation. The effects of cables and brackets on the temperature and velocity fields in the chamber are analyzed. The effect of non uniformity of velocity distribution and the stack effect on the temperature distribution in the GIL chamber are revealed. The results can provide some reference for the design and specification revision of heat exhaust ventilation for similar utility tunnels in the future.  相似文献   

20.
In recent years, with the help of good national policy support, the design, manufacturing and construction technology for tunnel boring machine (TBM) in China have been greatly improved; but compared with foreign relatively proven technology, there is still a certain gap for domestic technology development and engineering application. Based on the situation analysis of research and application of TBM in China and abroad, the research work for TBM design is carried out according to the complex geological conditions of Gaoligongshan Tunnel on Dali Ruili Railway as follows. (1) The prototype disc cutter rock breaking and scaled disc cutter wearing experiment are carried out to provide reference for adaptable design of TBM cutterhead and key parameter calculation. (2) The TBM design scheme is discussed from the aspects of high efficiency rock breaking of cutters and cutterhead, TBM over excavation, integrated support system, etc. (3) Two kinds of advanced geological prediction technology, i.e. HSP method and RTP method, are researched. The study results can provide reference for design and manufacture of TBM with high adaptability in complex geology and construction application in Gaoligongshan Tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号