首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文中根据不同工况驾驶员转向行为数据,提出了基于驾驶员避撞转向行为特征的聚类算法。首先搭建驾驶模拟器,采集了定半径转向、常规换道和紧急避撞转向工况下的驾驶行为数据,通过对比正常行驶和紧急避障工况下驾驶员转向行为数据,定性分析了紧急避撞转向特点。之后,利用皮尔逊相关系数法分析了描述驾驶员转向行为的观测变量与紧急避撞转向行为的相关性,得出转向盘转速与转向工况的相关性最高。接着,以转向盘转速作为聚类特征参数,利用改进K均值(K-means++)聚类方法对转向行为数据进行了聚类,将转向行为划分为正常转向和紧急避撞转向,实现了紧急避撞转向工况的识别。最后,通过实车试验验证了所提出的紧急避撞转向行为K-means++聚类方法可有效识别驾驶员紧急避撞转向行为,聚类精度达96.7%。  相似文献   

2.
为提高智能汽车极限工况下的自动紧急避撞能力,提出了一种联合制动与转向的综合控制方法。首先,建立了包含转向、制动和悬架子系统耦合特性的18自由度统一动力学模型,并对其进行了水平路面上的转向制动仿真。接着,提出了联合制动与转向的自动紧急避撞系统总体框架,其中路径规划选用五次多项式规划算法,纵向采用滑模跟踪控制,侧向采用基于2自由度参考模型的最优四轮转向跟踪控制。最后,参考乘用车双移线极限工况测试国际标准,构建自动紧急避撞驾驶场景,对上述模型在不同车速下的自动紧急转向避撞和联合制动与转向避撞进行了对比仿真。结果表明:当车速较高时,车辆实际轨迹与理想跟踪轨迹存在一定滞后,极限工况下仅通过转向操作难以成功避撞;而联合制动与转向的避撞控制系统可进一步提高车辆极限工况下的自动紧急避撞能力,最大通过车速可由50提高至60 km/h。  相似文献   

3.
针对现有紧急情况下车辆的碰撞危险评估算法大多只考虑量测噪声干扰带来的不确定性,提出一种综合考虑路面动态环境不确定性和量测噪声干扰的汽车碰撞危险估计算法。首先,构建"路面状况-车速-最大减速度"模糊推理模型,即由路面状况和自车车速,经模糊推理智能算法快速获取车辆制动最大减速度;建立基于运动学的预测模型,考虑上述路面附着状况动态变化和传感器量测噪声带来的不确定性,采用蒙特卡洛法实时计算自车当前行驶环境下的碰撞概率。根据汽车动力学和道路有关参数预测车辆紧急制动和转向的轨迹,从而得到制动避撞与换道避撞的碰撞概率。以交叉路口和追尾工况为例,对比分析了不同路面情况下制动避撞和转向避撞的碰撞概率,从而为车辆选择合理的避撞方式。结果表明,所提出的危险估计算法与真实交通动态环境下的紧急避撞行为比较相符,具有良好的有效性和可行性。  相似文献   

4.
基于驾驶员跟车习惯的报警/避撞算法研究   总被引:2,自引:0,他引:2  
张磊  王建强  李克强  连小珉 《汽车工程》2006,28(4):351-355,375
在驾驶员实车实验的基础上,研究跟车工况中的驾驶员行为特性和习惯,建立驾驶员跟随车距模型,并结合对车辆制动过程的分析,研究分别基于驾驶员制动行为特性和驾驶员跟随车距模型的报警/避撞算法,通过改变算法的参数值,可使算法得到的报警/避撞时机符合不同驾驶员的驾驶习惯。利用实验数据对算法进行离线检验,验证该算法在报警/避撞系统中的适用性。  相似文献   

5.
在紧急避撞场景下,驾驶员极易因慌乱和误判,产生异常驾驶行为,故提前检测出驾驶员的异常行为对于确保驾驶员自身和周边交通的安全有重要意义.为此,本文中提出了综合转向盘转角残差序列和相平面图判断的异常驾驶行为检测方法.首先,基于相平面法确定车辆稳定性边界;接着,建立基于模型预测控制的驾驶员模型,构造实际驾驶操作与驾驶员模型参...  相似文献   

6.
利用图像式汽车行驶记录仪在北京市采集了大量自然行驶状态下的驾驶行为数据,基于追尾碰撞中的驾驶员制动操作行为,分析驾驶员安全与危险跟车状态和车辆状态参数之间的关系,利用Fisher判别分析法建立了符合驾驶员危险感知特性的车辆追尾预警算法.研究结果表明该算法总的判别准确率高达95%.  相似文献   

7.
为弥补传统风险评价指标对相对速度较小的跟车场景危险水平评价能力的不足,减少跟车场景中追尾事故的发生,提出了跟车场景潜在风险的概念。将假定前车以较大制动减速度减速条件下的风险称为潜在风险,并构建了代表驾驶人在潜在危险跟车场景下进行避撞操作需满足的最大反应时间的参数时间裕度(TM)。由于追尾危险工况中常见采取的避撞操作可分为制动和制动转向两大类,分别对典型制动避撞过程和制动转向避撞过程进行了分析,从而推导出分别针对2种跟车潜在危险场景的TM计算方式。通过自动筛选与人工筛选结合,获得了中国自然驾驶数据库(China-FOT)中具有中国驾驶人特点的制动避撞危险工况87个和转向制动避撞危险工况40个进行分级,并基于图像处理方法提取了前车制动开始时刻的TM值,从而得到跟车场景潜在风险两级危险域的划分。结果表明:制动避撞场景下,本车车速过低和过高时,TM值的变化均不明显;而在制动转向避撞场景中,只有速度较高时阈值才保持不变。通过对正常驾驶视频的分析,引入对比组共计正常跟车制动工况163例和正常跟车转向变道工况151例的车头时距(THW)值,其统计分析结果与支持向量机分类结果均难以清晰描述跟车场景危险水平与本车速度之间的关系。为研究跟车场景潜在风险评价在自动驾驶中的应用,对于制动避撞场景,在设定TM值不变和相对速度不变的条件下,分别对基于TM的最小相对距离和距离碰撞时间(TTC)值进行了仿真,仿真结果显示,相比于TTC而言,TM的评价稳定性受相对速度影响小,在自动驾驶跟车策略开发和避免其发生责任追尾事故中有重要应用价值。  相似文献   

8.
提出了一种基于驾驶员避撞行为的行车风险状态分类方法,并综合考虑驾驶员驾驶行为、道路和环境因素对行车风险状态变化的影响,运用支持向量机(SVM)建立不同行车模式下行车风险判别算法。基于美国弗吉尼亚理工大学"100-car"自然驾驶数据对预测算法进行了训练和验证,结果表明,在进行行车风险状态预测建模时考虑驾驶员行为、道路和环境因素的差异(特别是驾驶员分心状态)将有利于提高预测模型的准确率;另外,在满足假正率低于5%的条件下,本文构建的预测算法对未来行车过程中的高风险状态预测具有较高的准确率,有助于对临近危险状态的驾驶员给予及时的警告或辅助纠正,为防撞预警策略和控制方法的研究提供了新的思路。  相似文献   

9.
自动驾驶汽车的测试与评价方法对于自动驾驶汽车的快速发展具有重要作用。安全是自动驾驶汽车发展的首要前提,自动紧急避撞是保障自动驾驶汽车行驶安全的重要功能。文章首先分析了自动紧急避撞功能的典型测试场景;其次,基于典型测试场景,研究了自动紧急避撞功能的测试与评价方法;最后,根据提出的测试与评价方法对自动驾驶汽车自动紧急避撞功能进行了实际的案例分析。  相似文献   

10.
本文中提出了一种通过制动或换道来实现的追尾避撞控制策略。首先通过模拟驾驶仪采集驾驶员避免追尾碰撞的换道时机、制动强度、最大加速度变化率和反应时间,构建了驾驶员制动避撞行为和换道避撞行为模型;然后建立基于制动安全距离、碰撞时间和换道安全距离的危险估计模型,实时计算行车发生追尾碰撞的危险等级并据此选取相应的主动避撞介入时机和方式;最后依据碰撞时间和结合前馈控制的线性状态反馈控制方法,分别建立制动避撞策略和换道避撞策略。Matlab仿真和实车试验验证结果表明,该避撞控制策略能通过自主换道或制动避免中低速跟车行驶时的追尾碰撞。  相似文献   

11.
为准确而直观地判断当前工况的危险程度,充分利用已知的车间运动信息,以安全时距模型为基础,提出了一种新的碰撞时间(TTC)的建模方法。基于危险判定指标TTC开发了一种符合驾驶员避撞特性的主动避撞系统;设计了主动避撞分级制动策略,其关键参数根据驾驶员特性和实车试验结果确定;同时,引入了一个预警门限值T_w,设计了采用声、光预警的主动避撞预警策略,帮助驾驶员实现有效避撞。实车试验结果表明:该系统的分级制动和预警策略符合驾驶员的避撞特性,体现了驾驶员控制的优先性和协调性,可有效避免碰撞,满足汽车主动避撞的要求。  相似文献   

12.
紧急避障工况下的驾驶人操作具有响应快且动作幅值较大的特点,传统预瞄驾驶人模型已不能适应紧急避障工况的需求,故考虑实际避撞场景开发相应的驾驶人模型就显得尤为必要。针对此种状况,基于驾驶模拟器,结合紧急避撞工况实际驾驶人操纵数据,提出了一种融合预瞄与势场栅格法的紧急避撞驾驶人模型。首先针对紧急避撞工况下车辆运动特点,建立车辆横、纵向耦合非线性动力学模型,并给出其状态空间方程描述;其次,离线仿真分析紧急避撞系统特征,并结合线性二次型最优控制,建立最优曲率预瞄+跟踪误差反馈驾驶人模型;再者,基于紧急避撞工况下真实驾驶人经验转向行为数据,开发基于势场栅格法的驾驶人模型,为进一步提高驾驶人模型对避障行驶工况的适应性,将基于势场栅格法的驾驶人模型与最优曲率预瞄+跟踪误差反馈驾驶人模型进行融合,并基于Sigmoid函数实现两者输出的权重分配;最后,针对所提出的融合预瞄与势场栅格法的驾驶人模型,开展基于避撞台架的驾驶人在环仿真试验以及实车试验。研究结果表明:在紧急避撞工况下,对比最优曲率预瞄+跟踪误差反馈驾驶人模型,融合预瞄与势场栅格法的驾驶人模型输出的转向动作与实际驾驶人行为较为接近,可在保证避障安全性的前提下,兼顾避障路径跟踪精度与车辆行驶的稳定性。  相似文献   

13.
为了提高智能汽车的主动安全性,提出3种不同的自动紧急转向避撞跟踪控制方法。首先建立汽车避撞简化模型,对制动、转向及两者相结合的3种不同避撞方式进行对比分析。其次,为深入研究汽车避撞过程中的实际响应,建立包含转向、制动及悬架3个子系统耦合特性的底盘18自由度统一动力学模型,并进行相关试验验证。随后构建智能汽车自动紧急转向避撞控制框架,对五次多项式参考路径和七次多项式参考路径的横摆角速度和横摆角加速度进行对比分析。接着以线性2自由度转向动力学模型为参考对象,对最优控制四轮转向、最优控制前轮转向、前馈与反馈控制相结合的前轮转向3种不同的跟踪控制系统分别进行设计。最后,以汽车底盘18自由度统一动力学模型为研究对象,对上述3种避撞控制系统进行仿真试验对比分析。研究结果表明:与制动避撞相比而言,转向避撞所需的纵向距离有较大降低,随着车速的增加和路面附着系数的越低,效果越明显;七次多项式参考路径比五次多项式参考路径的避撞过渡过程更为平缓,当实际车速与控制器所用车速不一致时,前者避撞性能表现更优;最优四轮转向控制系统在高、低2种不同附着路面都具有较好的避撞效果,最优前轮转向控制系统次之,而前馈与反馈相结合的前轮转向控制系统在低附着路面上则表现出严重的失稳。  相似文献   

14.
为避免在危险出现时车辆与行人发生碰撞,提出了一种辅助驾驶员采用紧急转向的控制策略。从500例发生在日常驾驶过程的危险工况中,筛选出车辆直行与行人发生冲突的典型危险工况。利用Prescan创建开发场景。选用五次多项式规划转向避撞路径,利用前馈控制与反馈控制结合的策略,控制车辆跟踪参考路径。在Carsim和Matlab/Simulink环境下,基于二自由度车辆动力学模型进行联合仿真,以验证该策略的可行性、准确性和鲁棒性。结果表明:针对这类危险场景,该控制策略可以控制车辆跟踪避撞路径,以避免车辆与行人发生碰撞事故。  相似文献   

15.
为提高汽车行驶安全性,设计了基于障碍物斥力场模型的汽车主动避撞系统,建立了道路算盘模型和驾驶员预瞄跟随模型,利用算盘模型可求解出避撞路径,使用驾驶员预瞄跟随模型可求解出汽车转向盘最优转角。通过动静态障碍物环境下的仿真试验表明,利用算盘模型规划出的路径平滑、安全、可跟踪;驾驶员预瞄跟随模型的路径跟随精度高,实现了汽车主动避撞。  相似文献   

16.
为了提高滑行能量回收经济性和踏板制动安全性、舒适性,基于交通信息,提出了电动汽车(EV)制动协调策略。分析了滑行制动的经济性,由交通信息和汽车行驶状态确定滑行制动强度;由道路信息和前方车辆信息建立汽车安全距离模型和碰撞预警策略,利用预警信息对滑行制动和踏板制动强度进行协调。对本策略进行仿真验证。结果表明:利用交通信息的滑行策略,在通行良好工况下综合能耗减少1.1%,拥堵工况下减轻驾驶员的制动疲劳;预警和协调策略避免了频繁预警,减小了紧急避撞触发几率。因此,利用交通信息能够辅助驾驶员进行更加合理的制动。  相似文献   

17.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T■划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8g(g为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξ和T■指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

18.
以自然驾驶条件下行为风险的辨识为目标,基于GPS数据,重点研究自然驾驶条件下驾驶行为的风险评估与行为特征表达.建立基于GPS数据的自然驾驶行为数据库,提出基于信息熵自然驾驶条件下行为风险评估方法,构建基于图谱的驾驶员个体驾驶行为特征表达方法.本文深入挖掘驾驶员个体驾驶行为模风险特征,构建驾驶行为图谱,为普通驾驶员在日常、自然驾驶条件下的行为风险预测预警提供了解决方案,为推进道路交通安全水平提升提供了理论参考和技术支撑.  相似文献   

19.
为了弥补现有汽车避撞控制策略以及碰撞风险评价指标单一的不足,提出转向和制动协调的主动避撞控制系统。首先规划了五次多项式换道路径,在对其理论分析的基础上得到转向临界避撞距离和与目标车道车辆的安全距离约束。其次,考虑道路附着系数和系统延迟的影响,基于制动过程给出制动临界避撞距离,并以纵向行驶安全系数ξ和碰撞时间倒数T-1TC划分安全行驶区域,利用驾驶人实车跟车数据标定稳态跟随/定速巡航区域的阈值。随后,通过转向/制动临界避撞距离的对比给出2种避撞方式的安全收益范围。最后搭建Simulink/CarSim联合仿真模型,并对其进行不同初始条件下的避撞仿真试验。研究结果表明:转向操作在制动距离不足时仍是有效的;当主车高速近距离接近静止前车时,主车可以顺利采取转向换道动作,而常规ACC系统在2.5 s处的车间相对距离为-0.76 m,事实上已经发生了碰撞;当相邻车道前车与主车纵向间距不满足换道安全距离约束时,避撞控制系统进入紧急制动模式,最大制动减速度达到-0.8gg为重力加速度),实际最小车间距为5.1 m;通过转向和制动的协调动作,充分发挥了车辆的避撞潜力;ξT-1TC指标的融合,可以更好地评估碰撞风险并实现不同控制模式的转换,在保证行车安全的同时可避免过分制动给乘客造成的紧张感。  相似文献   

20.
在线控转向系统中,采用一种基于多维高斯隐马尔科夫模型的驾驶员转向行为辨识方法,可达到辅助驾驶员驾驶、屏蔽驾驶员错误操作和提高汽车主动安全性的目的.通过驾驶模拟器采集相应工况数据,经数据预处理 后,应用Baum-Welch 算法对多维高斯隐马尔科夫模型进行优化,且应用Labview进行在线辨识,准确率达到99.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号