首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
SUMMARY

The architecture of the PATH vehicle lateral control system is presented in this paper. The two main modules are an intelligent reference/sensing system, and an Frequency-Shaped-Linear-Quadratic/preview control algorithm. The whole lateral control system was formerly evaluated on a two-door test vehicle. It was transplanted to a four-door vehicle which is considerably different from the older two-door test vehicle in dynamic characteristics. The objective of this study is to investigate the reusability of our control system.  相似文献   

2.
The active lateral suspension (ALS) of a train consists of either active or semi-active technologies. However, such an active system on a real railway vehicle is not easy to test because of cost and time. In this study, a hardware-in-the-loop simulation (HILS) system is developed to test the ALS. To this end, the dynamic model of a railway vehicle is equipped with the actuator, two bogies and four-wheel sets, and the ALS is used. The proposed HILS system consists of an alternating current servo motor connected to a ball-screw mechanism and a digital control system. The digital control system implements the dynamic model and the control algorithm. The design and manufacture of the HILS system are explained in detail. Both the passive damper and the magneto-rheological (MR) fluid damper are tested using the HILS system, where the sky-hook control algorithm was applied for the MR fluid damper. Experimental results show that the proposed HILS system can be effectively used for the performance estimation of the ALS.  相似文献   

3.
A methodology is presented for estimating vehicle handling dynamics, which are important to control system design and safety measures. The methodology, which is based on an extended Kalman filter (EKF), makes it possible to estimate lateral vehicle states and tire forces on the basis of the results obtained from sinusoidal steering stroke tests that are widely used in the evaluation of vehicle and tire handling performances. This paper investigates the effect of vehicle-road system models on the estimation of lateral vehicle dynamics in the EKF. Various vehicle-road system models are considered in this study: vehicle models (2-DOF, 3-DOF, 4-DOF), tire models (linear, non-linear) and relaxation lengths. Handling tests are performed with a vehicle equipped with sensors that are widely used by vehicle and tire manufacturers for handling maneuvers. The test data are then used in the estimation of the EKF and identification of lateral tire model coefficients. The accuracy of the identified values is validated by comparing the RMS error between experimentally measured states and regenerated states simulated using the identified coefficients. The results show that the relaxation length of the tire model has a notable impact on the estimation of lateral vehicle dynamics.  相似文献   

4.
乘坐舒适性是决定乘客对智能车辆接受度的重要因素之一。为了提升智能车辆的舒适性,服务智能驾驶控制算法的设计和优化,开展了基于乘客主观感知的实车乘坐舒适性试验,试验中驾驶人驾驶传统车辆执行多次换道操作,获取了60名被试乘客对换道操作的舒适性评价数据,并采集了车辆的运动数据。选取换道时横向最大加速度、回正时横向最大加速度、横向最大加加速度、横向加速度转换幅值以及横向加速度转换频率这5个车辆运动参数作为研究对象。采用二元Logistic回归单因素分析法分析了这5个车辆运动参数对乘坐舒适性的影响,采用接收者操作特征(ROC)曲线分析法为不同晕车易感性的乘客分别确立了这5个车辆运动参数的舒适性阈值,并根据岭回归分析法确定了不同参数对乘坐舒适性的影响权重。结果表明:所选取的5个车辆运动参数对乘坐舒适性具有显著影响,易晕乘客的舒适性阈值小于不易晕乘客的舒适性阈值,在换道过程中,换道时横向最大加速度、回正时横向最大加速度和横向加速度转换幅值是影响乘坐舒适性的主要因素。最后根据车辆运动参数和乘客生理特征参数建立了基于动态时间归整(DTW)和K最近邻(KNN)算法的乘坐舒适性预测模型,该模型对乘坐舒适性的预测准确率为84%,可用于智能车辆控制算法的舒适性判断。  相似文献   

5.
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。  相似文献   

6.
针对车辆在纵向运动和横摆运动时的强耦合关系给车辆动力学控制带来的困难,以四轮独立电驱动车辆作为研究对象,基于微分几何理论设计了车辆系统运动解耦控制方法,将非线性强耦合的四轮驱动车辆动力学系统解耦为纵向和横向两个相对独立运动控制子系统,并设计了鲁棒控制器,以提高抵抗车辆行驶时不确定外力如侧风的干扰能力。基于 Trucksim 软件建立四轮驱动车辆模型,并针对车辆解耦控制策略和抗干扰策略进行了仿真测试。结果表明,相比于无解耦控制的车辆,采用微分几何解耦控制的四轮独立驱动车辆纵向速度偏差降低了 82.1%,横摆角速度偏差降低了80.7%,且微风干扰下的抗干扰能力明显改善,车辆稳定性显著提升。为验证该运动解耦控制策略在实时系统中的控制效果,还进行了硬件在环试验,结果表明,硬件在环试验的结果与仿真结果一致。  相似文献   

7.
Cornering maneuvers with reduced body roll and without loss in comfort are leading requirements for car manufacturers. An electric active roll control (ARC) system controls body roll angle with motor-driven actuators installed in the centers of the front and rear stabilizer bars. A vehicle analysis model developed using a CarSim S/W was validated using vehicle test data. Two ARC algorithms for a sports utility vehicle (SUV) were designed using a sliding-mode control algorithm based on a nonlinear roll model and an estimated lateral acceleration based on a linearized roll model. Co-simulation with the Matlab simulink controller model and the CarSim vehicle model were conducted to evaluate the performance of two ARC control algorithms. To validate the ARC performance in a real vehicle, vehicle tests were conducted at KATECH proving ground using a small SUV equipped with two ARC actuators, upper and lower controllers and a few subsystems. From the simulation and vehicle validation test results, the proposed ARC control algorithm for the developed ARC actuator prototypes improves the vehicle’s dynamic performance.  相似文献   

8.
Lateral control of vehicles in IVHS requires the installation of on-board sensors as well as the installation of roadway hardware such as cables, magnets, etc. Existing control approaches in PATH require road curvature and vehicle lateral position (with respect to the center of the lane) information. Hence these approaches rely on roadway sensors to obtain relative lateral position. These methods will necessitate infrastructural changes to the highway.

This paper introduces the concept of autonomous lateral control or auto-tracking. The method allows us to use only line-of-sight sensor information to effect vehicle control. We present a detailed vehicle model. Controllers have been proposed to demonstrate the effectiveness of the proposed auto-tracking scheme. We also examine the possibilities of using this method for lane change purposes in an automated highway system.  相似文献   

9.
We report a model and controller for an active front-wheel steering (AFS) system. Two integrated dynamics control (IDC) systems are designed to investigate the performance of the AFS system when integrated with braking and steering systems. An 8-degrees-of-freedom vehicle model was employed to test the controllers. The controllers were inspected and compared under different driving and road conditions, with and without braking input, and with and without steering input. The results show that the AFS system performs kinematic steering assistance function and kinematic stabilisation function very well. Three controllers allowed the yaw rate to accurately follow a reference yaw rate, improving the lateral stability. The two IDC systems improved the lateral stability and vehicle control and were effective in reducing the sideslip angle.  相似文献   

10.
In this paper, a novel rollover prevention control algorithm is developed for application on vehicles with a high centre of gravity. The developed algorithm can be implemented on any vehicle equipped with an electronic stability program with or without an extra roll rate sensor. The vehicle rollover index is defined from the vehicle lateral kinetic energy and the new concept of virtual gravity. The algorithm is implemented on a production hydraulic control unit and tested using a typical medium size sport utility vehicle up to a speed of 110 km h-1. The test results show that the control algorithm prevents the vehicle rollover very successfully without any noticeable false activation or over correction resulting in severe under steer. Also, the controlled wheel speed shows a very stable and smooth trace.  相似文献   

11.
Previously, a new control concept called ‘G-vectoring control (GVC)’ to improve vehicle agility and stability was developed. GVC is an automatic longitudinal acceleration control method that responds to vehicle lateral jerk caused by the driver's steering manoeuvres. In this paper, a new yaw-moment control method, which generates a stabilising moment during the GVC command and has positive acceleration value and the driver's accelerator pedal input is zero, was proposed. A new hybrid control, which comprises GVC, electric stability control and this new control, was constructed, and it was installed in a test vehicle and tested on a snowy surface. The very high potential for improvement in both agility and stability was confirmed.  相似文献   

12.
This paper describes the examination of the vehicle dynamics and stability of four-wheeled forklift trucks (FLTs) in cornering situations. Cornering at excessive speed is one major reason for fatal accidents with forklifts caused by lateral tipover. In order to increase the lateral stability of this kind of working machinery, the influence of certain important design properties has been studied using an appropriate vehicle simulation model and a driving simulator. The simulation model is based on a multi-body system approach and includes submodels for the propulsion system and the tyres. The driving behaviour of the operator has not been modelled. Instead, a driving simulator has been built up and a real human driver was employed for ensuring adequate and realistic model input. As there have not been any suitable standardised test manoeuvres available for FLTs, a new driving test has been developed to assess the lateral stability. This test resembles the well-known J turn/Fishhook turn, but includes a more dynamic counter-steering action. Furthermore, the dimensions of the test track are defined. Therefore, the test is better adapted to the driving dynamics of forklifts and reflects the real driver behaviour more closely. Finally, a parametrical study has been performed, examining the influence of certain important technical properties of the truck such as the maximum speed, the position of centre of gravity, rear axle design features and tyre properties. The results of this study may lead to a better understanding of the vehicle dynamics of forklifts and facilitate goal-oriented design improvements.  相似文献   

13.
Road bank angles have a direct influence on vehicle dynamics and lateral acceleration measurement. A vehicle stability control system that knows road bank angle has an advantageous capability in achieving desired control sensitivities for maneuvers on ice and snow, among all surfaces, while avoiding false/nuisance activation on a banked road. Since neither lateral velocity nor road bank angle are directly measurable in current vehicle systems due to economical reasons, the major challenge is to differentiate the bias induced by road bank disturbances from actual effect of vehicle lateral dynamics in current measurements. This paper proposes a method of road bank estimation and provides theoretical background for the decoupling effort of lateral dynamics and road disturbances involved in bank estimation.  相似文献   

14.
针对智能车辆横向运动控制中驾驶员和辅助系统的控制权限冲突问题,本文中提出一种人机权值分配策略。采用车辆在预瞄点处的预期偏移距离(PDLC)衡量车道偏离危险度,预期偏移距离通过对预瞄偏差修正获取。权值分配函数设计时以PDLC为自变量,以保证驾驶员的权值为优先控制目标,以一定的横向运动控制精度为先决条件。在CarSim/Simulink联合仿真平台和CarSim/Labview RT硬件在环实验台上对提出的控制策略进行了实验验证和数据分析。结果表明,采用权值分配策略协调驾驶员和辅助系统的控制,可在有效跟踪理想道路中心线的前提下保证驾驶员的控制权值,降低其工作负荷以及纠正驾驶员的误操作行为。  相似文献   

15.
Road bank angles have a direct influence on vehicle dynamics and lateral acceleration measurement. A vehicle stability control system that knows road bank angle has an advantageous capability in achieving desired control sensitivities for maneuvers on ice and snow, among all surfaces, while avoiding false/nuisance activation on a banked road. Since neither lateral velocity nor road bank angle are directly measurable in current vehicle systems due to economical reasons, the major challenge is to differentiate the bias induced by road bank disturbances from actual effect of vehicle lateral dynamics in current measurements. This paper proposes a method of road bank estimation and provides theoretical background for the decoupling effort of lateral dynamics and road disturbances involved in bank estimation.  相似文献   

16.
In recent years, the driver's active assistances have become important features in commercialised vehicles. In this paper, we present one of these features which consists of an advanced driver assistance system for lane keeping. A thorough analysis of its performance and stability with respect to variations in driver behaviour will be given. Firstly, the lateral control model based on visual preview is established and the kinematics model based on visual preview, including speed and other factors, is used to calculate the lateral error and direction error. Secondly, and according to the characteristics of the lateral control, an efficient strategy of intelligent electric vehicle lateral mode is proposed. The integration of the vehicle current lateral error and direction error is chosen as the parameter of the sliding mode switching function to design the sliding surface. The control variables are adjusted according to the fuzzy control rules to ensure that they meet the existence and reaching condition. A new fuzzy logic-based switching strategy with an efficient control law is also proposed to ensure a level of continuous and variable sharing according to the state of the driver and the vehicle positioning on the roadway. The proposed control law acts either at the centre of the lane, as a lane keeping assistance system to reduce the driver's workload for long trips, or as a lane departure avoidance system that intervenes for unintended lane departures. Simulation results are included in this paper to explain this concept.  相似文献   

17.
A new dynamic model of a high-speed EMS maglev vehicle/guideway interaction is presented. The model considers the vehicle and the guideway as an integral system and couples vertical interaction with lateral interaction. The vehicle subsystem is modeled as a multi-body system, which runs on the guideway with a constant velocity. The guideway substructure is modeled as an elastic beam. The attractive magnetic forces between vehicle and guideway are decided by controller, observer, and filter. A special simulation program is developed. Numerical results of the program are compared with test results. The results show that the coupling model is appropriate and the simulation program is credible primarily. Applications of coupling model to the investigation of the effect of irregularities on maglev system are reported at the end of the paper. The studies in this paper can be used to evaluate and optimize dynamic performances of the high-speed EMS maglev system.  相似文献   

18.
针对前轮独立驱动电动汽车,研究一种基于小波控制器的驱动稳定性控制系统。为提高车辆对开路面的行驶稳定性,根据驱动轮等转矩分配控制策略,提出基于神经网络PID的驱动轮滑移率相近为目标控制策略。针对矢量控制中的电流控制,提出基于离散小波变换的电流控制器。通过CarSim/Simulink建立前轮独立驱动电动汽车联合仿真平台,进行不同工况整车性能仿真与分析,并基于A&D5435快速原型开发平台进行实车试验。仿真与试验结果表明:基于小波控制器的驱动控制系统不仅提高了车辆对开路面行驶的稳定性,而且具有更平滑、更快速的转矩响应;对开路面工况下,提出的控制策略左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.43%和3.56%;等转矩分配控制策略下,左侧、右侧驱动轮速度仿真结果与试验结果最大偏差分别为3.86%和3.25%,表明了试验与仿真的一致性;对开路面仿真工况下,相比于驱动轮等转矩分配控制策略,基于神经网络PID的驱动轮滑移率相近为目标控制策略的车辆峰值质心侧偏角降低了79.57%,侧向跑偏距离降低了73.39%。  相似文献   

19.
A new dynamic model of a high-speed EMS maglev vehicle/guideway interaction is presented. The model considers the vehicle and the guideway as an integral system and couples vertical interaction with lateral interaction. The vehicle subsystem is modeled as a multi-body system, which runs on the guideway with a constant velocity. The guideway substructure is modeled as an elastic beam. The attractive magnetic forces between vehicle and guideway are decided by controller, observer, and filter. A special simulation program is developed. Numerical results of the program are compared with test results. The results show that the coupling model is appropriate and the simulation program is credible primarily. Applications of coupling model to the investigation of the effect of irregularities on maglev system are reported at the end of the paper. The studies in this paper can be used to evaluate and optimize dynamic performances of the high-speed EMS maglev system.  相似文献   

20.
In this paper, the torque and power required by dual motors for electric tracked vehicle during dynamic steering maneuvers with different steering radiuses are analyzed. A steering coupling drive system composed of a new type of center steering motor, two Electromagnetic (EM) clutches, two planetary gear couplers, and two propulsion motors is proposed for the dual motors drive high speed electric tracked vehicle (2MHETV), which aims to improve its lateral stability. An average torque direct distribution control strategy based on steering coupling and an optimization-distribution-based close-loop control strategy are designed separately to control the driving torque or regenerative braking torque of two propulsion motors for vehicle stability enhancement. Then models of the 2MHETV and the proposed control strategy are established in Recudyn and Matlab/Simulink respectively to evaluate the lateral stability of dynamic steering for the 2MHETV with different steering radiuses on hard pavement.The simulation results show that the lateral stability of the 2MHETV can be significantly improved by the proposed optimization-distribution-based close-loop control strategy based on steering coupling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号