首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
日照作用下混凝土单箱双室磁浮轨道梁的温度场分布不均匀,易引起变形、开裂,影响轨道平顺性及行车安全性。基于传热学原理,结合上海夏季辐射和气温等气象资料,针对日照作用下混凝土双室箱梁的温度场分布展开有限元模拟分析,研究了不同时刻时轨道梁截面的温度分布规律,得到了箱梁在不同时刻的温度云图;提取最大竖向温差时刻腹板和最大横向温差时刻底板中线的温度值,拟合后得到横向与竖向的温度梯度曲线,与规范温度梯度对比后发现:竖向温度梯度峰值比规范值大,变化更加剧烈,且在底板附近存在反向温差,横向温度梯度峰值比规范值小,变化也更加剧烈且同样存在反向温差,双室箱梁的温度梯度模式与规范不一致。  相似文献   

2.
大跨度复杂结构桥梁施工全过程结构空间受力特性研究   总被引:3,自引:2,他引:1  
研究目的:通过建立施工全过程时效和路效分析的三维非线性模型,对大跨度V形连续刚构拱组合结构桥的施工全过程空间受力特性进行研究,解决以往的桥梁设计和施工监控采用的计算方法不能有效分析混凝土箱梁的剪力滞、扭转和畸变等引起的截面应力分布不均匀问题。研究结论:分析了大跨度V形连续刚构拱组合结构桥施工全过程主梁截面顶板纵向正应力、横向压应力、腹板剪应力等截面空间应力分布和变化规律,其表现在:主梁截面顶板纵向正应力沿横向分布呈显著的不均匀性,剪力滞效应明显,与初等梁理论的预测值相异;主梁横向压应力普遍不大,且顶板应力分布不均匀程度大于底板;单箱双室截面梁三腹板剪应力分布连续变化,且中腹板的剪应力略大于边腹板剪应力,整体具有较好的规律性;施工全过程主梁纵向正应力包络线体现了最大拉应力和最大压应力的施工工况,为施工控制提供了理论基础。  相似文献   

3.
建立了考虑不同力学因素的有限元模型,对不同曲率半径的波形钢腹板曲线箱梁桥的静力特性进行计算,分析了结构主要部位在活载作用下的内力、变形和应力分布随其曲率半径的变化规律。研究结果表明:波形钢腹板使得曲线箱梁桥抵抗翘曲的能力减弱;波形钢腹板箱梁截面正应力横向分布不均匀,钢腹板和混凝土板相交处正应力发生突变;钢腹板剪应力沿腹板高度分布不均匀。  相似文献   

4.
针对高速铁路下承式结合梁系杆拱桥,通过有限元分析,对纵横梁桥面系和密布横梁桥面系2种结合方式、混凝土桥面板不同的分块方式等问题进行研究。结果表明:纵横梁桥面体系在纵横梁交点处存在应力突变,其横梁应力较密布横梁高。对于密布横梁方案,随着混凝土断缝数量的增多,系梁挠度增幅不大,系梁和拱肋内力变化不大,但横梁应力有所降低,混凝土桥面板的整体应力大致呈降低趋势;在施工上,密布横梁体系比纵横梁体系简单方便。对于128 m跨度双线下承式钢系杆拱桥的桥面结合方式,建议采用密布横梁体系,桁距16 m,混凝土桥面板设置断缝,按5节间(25 m 27 m 24 m 27 m 25 m)布置。  相似文献   

5.
下承式钢桁结合梁桥通过桥面板与主桁结构的连接形成稳定的空间结构,使得桥梁的刚度,特别是面外抗弯刚度得到了有效提高。密布横梁体系的下承式钢桁结合梁桥则取消了纵梁,增加了节间横梁,改善了桥梁结构主桁的受力情况。本文以跨度64 m的密布横梁式钢桁结合梁桥为例,通过静、动载试验和有限元分析,研究了该结构体系的受力特性。研究结果表明:该桥一阶横向自振频率满足规范要求;且由于桥面板与下弦杆形成的整体共同承受外部荷载,在30 t轴重荷载作用下弦杆与横梁受力较小,最大应力分别为26.39,30.73 MPa,并有效减小了下弦杆挠度,实测挠跨比远小于限值;混凝土桥面板以受拉为主,顺桥向最大应力为3.53 MPa。该桥动力性能良好,跨中横、竖向振动特性均满足规范要求,满足30 t轴重重载运输要求。  相似文献   

6.
混凝土箱梁受到太阳辐射、大气温度波动等多种气象因素的综合作用,结构内部会产生显著的非均匀温度分布。截面内温度梯度可能会导致桥梁结构产生过大的温度应力与温度变形,影响桥梁结构的安全性和耐久性。本文旨在探究气象因素对混凝土箱梁温度场的影响机理,并提出一种能精确预测中国多区域混凝土箱梁截面最大温度梯度的方法。首先建立了日照条件下混凝土箱梁温度场计算模型,将2 a以上气象资料作为输入条件,对多个地区混凝土箱梁温度场长期变化进行了仿真模拟,并对混凝土箱梁截面温度梯度的长期变化趋势进行了分析。然后利用主成分分析(PCA)确定了混凝土箱梁截面最大温度梯度预测模型所需的输入参数。最后利用遗传算法优化的BP神经网络建立预测混凝土箱梁竖向、横向温度梯度的网络模型,并与混凝土箱梁截面温度梯度进行比较。结果分析表明BP神经网络模型可以精确地预测混凝土箱梁最大温度梯度,预测值平均绝对误差(AAE)均小于0.9℃,均方根误差(RMSE)均小于1.2℃,决定系数(R2)均大于0.9。基于当地气象条件,本文利用经典的BP神经网络模型所建立的预测模型对中国不同地区的混凝土箱梁截面最大温度梯度均能给出准确的预测,为混凝土...  相似文献   

7.
为了解决正交异性桥面板铺装破坏和钢桥面板开裂的问题,提出一种常温养护下正交异性钢板-活性粉末混凝土(RPC)组合桥面结构体系。基于某大桥建立局部有限元模型,并计算对比常温RPC组合箱梁、纯钢箱梁、高温RPC组合箱梁和普通混凝土组合箱梁的桥面系应力状态;同时开展局部模型静载试验。研究结果表明:常温养护下RPC抗压强度、抗折强度和弹性模量与普通混凝土相比有明显的提高;常温养护的RPC组合箱梁的RPC层拉应力达到了6.45 MPa,未出现裂缝,此应力远高于普通混凝土的抗拉强度,从而为解决桥面铺装破坏提供了思路;常温RPC组合箱梁和高温RPC组合箱梁桥面板应力降幅都超过了80%,明显大于普通混凝土组合箱梁,从而改善桥面板疲劳性能。常温养护的RPC在施工现场便于制作,应用前景较好。  相似文献   

8.
研究目的:为研究高速铁路大跨连续钢桁梁柔性拱桥正交异性钢桥面板疲劳细节的局部受力,本文以银西高铁银川机场黄河特大桥为背景,建立横梁弧形切口以及U肋与顶板连接焊缝两处疲劳细节的精细化有限元模型,分析列车移动荷载作用下疲劳细节处的应力分布,并对比分析不同弧形切口形状和横梁腹板厚度对疲劳细节局部应力的影响规律。研究结论:(1)正交异性钢桥面的U肋-横梁位置的弧形切口处在移动活载下容易出现应力集中,且弧形切口起始处与弧形切口自由边所对应的最不利活载位置不同,在轨枕横向两侧端部下方的横梁弧形切口起始处以及弧形切口自由边容易出现最大主应力;(2)横梁板厚对弧形切口自由边的主压应力影响最大,且随板厚增大该处主压应力减小,对本工程当板厚由16 mm增加至20 mm时,主压应力减小幅度超过20%;(3)不同弧形切口形状对疲劳细节的局部应力也有较大影响,与原设计切口形状相比,日本设计规范所推荐切口形状的主应力极值最小;(4)为提高正交异性钢桥面板的疲劳特性,对U肋-横梁疲劳细节进行局部构造优化是必要的,研究成果对同类型结构的优化设计具有理论指导意义。  相似文献   

9.
研究目的:针对某大跨预应力混凝土连续刚构桥在施工过程中腹板开裂的问题,对该桥主桥腹板所有裂缝进行全面检查,完成可查裂缝宽度、深度的检测。通过归纳总结裂缝的分布特征,利用有限元分析软件ANSYS建立开裂混凝土节段的空间模型,结合腹板开裂相关理论,分析腹板开裂的原因,探究裂缝分布规律。研究结论:(1)腹板两侧的裂缝基本对称于箱梁纵轴线,较多出现在腹板内侧,与腹板下弯束的布置位置、方向符合程度较高;(2)有限元分析结果表明,腹板下弯束及其锚固点周围的部分区域主拉应力超过混凝土抗拉强度设计值,且该区域基本沿预应力束分布;(3)该腹板裂缝属于主拉应力裂缝,过大拉应力主要来源于预应力束径向力、箱梁空间效应产生的次拉力以及锚固应力扰动区的横向拉应力;(4)设计者应重视箱梁横向应力和空间效应,必要时对复杂受力区域进行精细的局部分析,以保证主拉应力不超过限值;(5)本研究成果可为预应力混凝土连续刚构桥的相关设计及施工提供参考借鉴。  相似文献   

10.
标准混凝土箱梁在我国铁路建设中得到了广泛应用。铁路应用某新型标准混凝土箱梁,采用单排大吨位的预应力锚固形式,共计在梁端设置了17个预应力锚固区。相较于武广客专等应用的双排预应力钢束标准混凝土箱梁,其腹板预应力锚固区的局部应力分布及精细化力学行为值得进一步研究。通过建立新型标准混凝土箱梁空间有限元模型,考虑材料的非线性行为,对箱梁端部预应力锚固区的局部应力场及裂缝开展高精度计算分析。研究结果表明:预应力钢束张拉过程中锚固区混凝土最大主压应力位于N6(腹板最上部预应力钢束)的喇叭口边缘,为33.45 MPa;最大主压应力小于其抗压极限强度值,集中在喇叭口的环向范围内,整体呈现区域小、收敛快的分布形式;标准混凝土箱梁的主拉应力值随预应力钢束张拉不断增大,其中N3(腹板最下部预应力钢束)区域的主拉应力变化最为显著,张拉完成后,锚固区混凝土最大主拉应力达到了混凝土抗拉极限强度,主要分布于锚垫板四周,最大裂缝出现在N6锚垫板上边缘的两角处,裂缝宽度为0.088 mm。混凝土封锚可有效降低预应力锚固区的开裂风险,但在实际服役环境中仍应对此区域进行重点关注。  相似文献   

11.
为研究设计速度350 km/h高速铁路斜拉桥钢-混组合箱梁的受力特性与桥面变形性能,采用Ansys软件建立赣江特大桥3个梁段的有限元模型,分析其应力分布特性;以应力等效的原则优化设计出相似比为1:3的全截面静载试验模型并开展受力传力及桥面变形特性研究.结果表明:钢-混组合箱梁在轴力及弯矩最不利荷载组合工况下,混凝土桥面...  相似文献   

12.
李铭伟 《铁道勘察》2021,(2):109-113
为研究钢混结合主梁混凝土桥面板的收缩徐变对大跨度高铁无砟轨道斜拉桥的影响,以昌吉赣客专赣江特大桥为工程背景,采用Midas Civil软件建立全桥精细化数值分析模型,考虑钢混结合梁混凝土桥面板不同的加载龄期,分析结合梁斜拉桥在收缩徐变效应下变形及受力的变化。结果表明:赣江特大桥结合梁在施工成桥初期至运营5年后,钢混结合梁混凝土桥面板收缩徐变引起面板及钢箱梁的应力变化情况均满足规范要求,桥面板及钢箱梁在施工成桥1年后收缩徐变完成50%以上,3年后完成80%左右;桥面板混凝土的加载龄期越长,混凝土收缩徐变对桥梁结构变形和受力的影响越小,并在混凝土加载龄期达到180 d后对桥梁结构的影响呈稳定趋势,将结合梁桥面板预制存放180 d后再进行吊装,可有效降低混凝土收缩徐变对此种结构正常使用期间力学行为的影响。  相似文献   

13.
顶板横向预应力钢束对箱梁横向计算结果的影响   总被引:3,自引:1,他引:2  
研究目的:研究顶板横向预应力钢束对箱梁横向计算结果的影响,给箱梁结构设计提供借鉴和帮助。研究方法:以达成线唐家渡涪江双线特大桥和襄渝线三汇镇渠江三线特大桥预应力混凝土连续箱梁为例,采用M IDAS进行箱梁横向分析计算。研究结果:通过实例分析计算得出,当顶板设置横向预应力钢束时,梁体弯矩方面:顶板、腹板顶部弯矩均明显减小,底板弯矩稍有增大;梁体应力方面:顶板处于受压状态,不出现拉应力,底板拉应力稍有增大。研究结论:合理设置顶板横向预应力钢束是非常有利的。但如果顶板横向宽度不大,且顶板结构高度不受限制时,则不必设置顶板横向预应力钢束。  相似文献   

14.
针对现有计算方法无法准确反应箱梁断面框架受力特征的缺陷,提出一种新的板段单元分析法。该方法基于Kirchhoff直线法假设,在已有箱梁腹板、翼板刚度方程基础上,准确考虑横隔板对结构整体受力的影响,相对粗略考虑横隔板自身的应力变化规律,提出新的横隔板元位移模式,从而建立完整的箱梁板元分析列式。算例分析表明:该方法可正确模拟箱梁纵向正应力受横隔板的影响规律,即较好地反映横隔板对箱梁翼、腹板的弹性支承效应;与通用有限元精细模型相比,在相同的计算精度要求下,板段元法所需的自由度少得多,极大地降低了仿真分析的计算量。板段元法适用于其他断面形状的箱梁结构或肋板式结构,也可用于斜交箱形直梁的分析,具有较好的适用性。  相似文献   

15.
钢-混凝土双面组合箱梁日照温度效应研究   总被引:1,自引:0,他引:1  
在自然环境下,钢一混凝土双面组合箱梁受一天中日照变化的影响,在梁体内部会产生相应的温度应力和变形。以三跨钢一混凝土双面组合箱梁为研究对象,对组合梁在6:00至18:00日照条件下的温度应力与位移进行计算分析。利用有限元软件ANSYSl0.0建立三跨连续组合箱梁有限元模型,采用间接耦合解法进行热一结构耦合场的运算。得到了温度应力与温度位移的分布规律及时程分析,并对箱梁混凝土底板对温度效应的影响进行探讨。  相似文献   

16.
以京沪高速铁路广阳梁场冬期制梁为例,详细介绍了制梁台座、存梁台座、钢筋加工区、搅拌站以及混凝土搅拌与浇筑保温措施,箱梁蒸汽养护温度控制技术和预应力孔道压浆养护方法。  相似文献   

17.
客运专线简支箱梁施工整体吊装移动模架设计   总被引:2,自引:0,他引:2  
研究目的:移动模架原位浇筑施工方法在客运专线简支预应力钢筋混凝土箱梁施工中得到了广泛的应用。但常规的施工方法制梁周期长、人工操作工序多、施工较难控制。如何克服或减少这些缺点是一个值得研究的课题。研究结果:通过理论分析和结构设计,将预制梁场钢筋整体绑扎、整体吊装和内模大块安拆的理念应用到移动模架施工中可以有效减少施工周期、提高移动模架施工的工厂化、标准化水平、减少人为失误,进而提高移动模架原位浇筑施工方法的整体水平。  相似文献   

18.
杭州湾大桥梁上运梁过程仿真分析   总被引:2,自引:0,他引:2  
对杭州湾大桥非通航孔滩涂区的50 m箱梁上运梁过程进行空间仿真分析。按照实际工况荷载,考虑预应力空间效应,施加等效节点力,并合理考虑支座等细部建模,建立精密的三维实体有限元仿真模型。混凝土的材料特性按现行公路桥梁设计规范取值,考虑最不利计算荷载,支座底部按刚性单元模拟,而与梁相接触层的弹性模量满足梁端回转变形时不出现拉应力,在结构离散时尽可能细分单元网格,由于梁端的应力相对复杂,采用比跨中更密的单元网格。计算承重箱梁整体变形和空间应力分布特性,结果为,由于载荷位置在支座附近,变形相对较小,最大挠度在反拱位移之内。支座截面的最大主拉应力发生在底板上表面侧,超过混凝土的开裂强度,因此,对该区域的混凝土应采取加劲处理,以防止混凝土拉裂;最大主压应力发生在架桥机肢腿处附近,小于混凝土的抗压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号