首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

2.
为指导高速铁路跨海超长联连续梁桥上无砟轨道无缝线路设计,基于梁轨相互作用原理及多体动力学理论,通过建立无砟轨道-多跨连续梁桥静力学分析模型与高速车辆-无砟轨道-连续梁桥耦合动力学分析模型,对超长联跨海连续梁桥上无砟轨道无缝线路的静、动力学特性进行分析研究。研究结果表明:(60+37×80+60) m连续梁温度跨度超长,须铺设钢轨伸缩调节器以降低钢轨应力;进行超长联跨海连续梁桥上无缝线路设计与检算时,应考虑活动支座摩阻力的贡献和影响;设置伸缩调节器后,连续梁桥上无缝线路钢轨受力、断缝值等各指标均能满足安全性要求;列车荷载作用下,车辆、轨道、桥梁的各项指标均满足动力性能评价要求;为保证轨道系统安全服役,建议加强混凝土连续梁伸缩调节区域轨道状态的调整、在线监测与科学维护。  相似文献   

3.
桥上无砟轨道受力比较复杂,桥上无砟轨道无缝线路的稳定性直接影响高速列车的行车平稳与安全。基于有限元法和梁轨相互作用理论,建立了6×32 m混凝土简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,研究温度荷载作用下钢轨、轨道板及底座板的受力变形特性,并对相关影响参数进行分析。结果表明:在温度荷载作用下,钢轨伸缩力的峰值出现在桥梁墩台及跨中,钢轨的纵向位移呈现先增后减的趋势,在中间两跨达到最大值,钢轨和轨道板的纵向伸缩趋势基本一致,表明扣件起到了很好的约束作用;桥上采用小阻力扣件可改善桥上无缝线路梁轨相互作用,但要充分考虑轨板相对位移不能过大,保证钢轨在桥台处的爬行能够得到有效控制;从减小桥上轨道结构伸缩力及纵向位移考虑,桥梁墩台固定端纵向刚度不宜过大。  相似文献   

4.
桥梁温度跨度对双块式无砟轨道无缝线路的影响研究   总被引:1,自引:1,他引:0  
为研究桥梁温度跨度对桥上双块式无砟轨道无缝线路的影响,运用线板桥墩一体化模型,计算不同温度跨度下,分别采用常阻力和小阻力扣件时的钢轨纵向力、道床板纵向力、抗剪凸台纵向力、梁轨相对位移以及钢轨断缝,分析桥梁温度跨度对轨道结构强度与变形的影响。结果表明:(1)随着桥梁温度跨度的增加,钢轨伸缩、挠曲、制动附加力和梁轨相对位移均增大;道床板、抗剪凸台纵向力和钢轨断缝保持不变。(2)扣件阻力减小时,轨道结构纵向力均减小;但梁轨相对位移和钢轨断缝增大。(3)为保证钢轨强度要求,当桥上铺设常阻力扣件时,桥梁温度跨度限值可取135m;当桥上铺设小阻力扣件时,桥梁温度跨度限值可取250m。  相似文献   

5.
新建连云港至盐城客货共线铁路,铺设跨区间无缝线路有砟轨道,设计客车行车速度200 km/h,全线大跨桥梁众多,其中跨沿海高速、苏北灌溉总渠特大桥主跨结构桥跨布置为(73+2×128+73)m连续梁+(73+4×128+73)m连续梁,2联大跨连续梁相邻布置,最大温度跨度达530 m,设计难度大。对此,基于桥上无缝梁轨相互作用原理,对该桥桥上无缝线路设计方案进行优化分析,在桥上设计了2组伸缩调节器以及一段小阻力扣件。  相似文献   

6.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

7.
针对我国高速铁路桥上CRTSⅡ型板式无砟轨道梁-板-轨相互作用问题,采用有限元法分别建立双线多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化空间耦合模型,考虑桥梁及轨道结构的细部尺寸与力学属性,计算列车荷载作用下各轨道及桥梁结构的挠曲力与位移,分析扣件纵向阻力、滑动层摩擦因数等参数对桥上无缝线路挠曲受力与变形的影响规律。研究结果表明:列车荷载作用下大跨连续梁桥上轨道结构的受力与变形要明显大于多跨简支梁桥,单线加载时有载侧和无载侧之间相差不大,且近为双线加载时的1/2;需要根据不同的检算部件选取最不利的列车荷载作用长度;采用小阻力扣件改善钢轨受力与变形时,固定支座桥台和连续梁活动支座桥墩处的轨板相对位移应加强观测;滑动层摩擦因数、固结机构纵向刚度及固定支座墩/台顶纵向刚度均需控制在合理范围内。  相似文献   

8.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

9.
建立了无砟轨道线桥墩一体化计算模型,用数值模拟法,以一组60 kg/m钢轨客运专线18号可动心轨道岔布置在连续梁上为例,通过两种类型("门"形筋混凝土道床、带限凸台的道床板)无砟轨道桥上无缝道岔与有砟轨道桥上无缝道岔基本轨温度附加力、基本轨伸缩位移的比较,表明:无砟轨道桥上无缝道岔温度附加力分布规律、钢轨位移分布规律与有砟轨道桥上无缝道岔相似,"门"形筋及带限位凸台无砟轨道桥上无缝道岔因道床阻力大,尖轨及心轨相对道岔板的伸缩位移要小;对于带限位凸台的无砟轨道结构计算结果表明:单个凸台的支座刚度>250 kN/mm时,凸台支座胶垫的压缩量<1 mm.道岔板不同温度变化幅度的计算结果表明,随着道岔板日温差增大,基本轨温度附加力、伸缩位移、翼轨末端间隔铁受力、直尖轨尖端相对道岔位移、转辙器道岔板受力、辙叉道岔板受力均随之减小,而心轨尖端相对道岔板位移、导曲线道岔板受力、连续梁固定墩受力则随之增大.  相似文献   

10.
桥上无缝道岔是在高速铁路、艰险山区铁路上铺设跨区间无缝线路不可避免的技术难题,同时跨越震区时,道岔结构自身处于双层薄弱环节之中。根据地震作用下有砟轨道桥上无缝道岔梁轨相互作用原理,建立地震作用下岔-桥-墩动力非线性有限元模型,分析地震波频谱特性、地震动加速度峰值、岔区阻力、梁体温差等因素下的有砟轨道桥上无缝道岔地震作用响应规律。研究结果表明:无缝道岔约束作用较大提高了桥梁结构的低阶自振频率,而且改变了其振动形态;地震波频谱特性和加速度峰值大小对桥上无缝道岔响应影响显著,地震荷载波频越靠近结构主频,加速度峰值越大,桥上无缝道岔受力和变形越大;在钢轨温变较高,又同时考虑地震荷载效应时,钢轨强度和线路稳定性均得不到保障,建议对跨越震区的桥上无缝道岔设计时检算地震荷载与钢轨、梁体温变共同作用时的钢轨纵向力以及道岔联结件受力、关键位置相对位移等。  相似文献   

11.
研究目的:为研究不同类型单元式无砟轨道无缝线路在大跨桥上的适应性,本文建立无缝线路-无砟轨道-桥梁空间耦合分析模型,对温度荷载作用下CRTSⅠ型和CRTSⅢ型板式无砟轨道各层纵向受力与变形、层间错动位移以及限位结构受力进行对比分析,并对运营过程中可能出现的扣件纵向阻力增加对两种无砟轨道在大跨桥上的适应性进行比较。研究结论:(1)两种无砟轨道无缝线路在连续梁端处受力与变形最大,但二者之间的差异较小;(2)扣件纵向阻力的增加将带来连续梁端位置处无缝线路受力增加,变形量减小;(3)CRTSⅢ型板式无砟轨道层间限位刚度大于CRTSⅠ型板式无砟轨道,因此扣件纵向阻力增加导致的CRTSⅠ型板式无砟轨道层间错动位移增加更加明显;(4)梁端限位结构在升降温过程中纵向受剪明显,其中CRTSⅠ型板式无砟轨道梁端半圆形凸台因单侧承力,纵向剪切效应更加显著,且随桥上扣件纵向阻力的增加而急速增加;(5)总体看来,两种无砟轨道的选用对大跨桥上无缝线路设计的影响基本无差异,但在轨道纵向几何形位保持以及大跨梁端限位结构受力方面,CRTSⅢ型板式无砟轨道表现出了较好的适应性;(6)本研究成果可为今后大跨度桥上板式无砟轨道的选型提供理论指导。  相似文献   

12.
研究目的:桥上CRTSⅡ型板式无砟轨道无缝线路梁-板-轨及层间相互作用机理比较复杂,为研究各轨道及桥梁结构的制动力传递规律及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路空间耦合模型,计算列车制动荷载作用下各轨道及桥梁结构的纵向力与位移,并分析多种因素对制动力传递规律的影响。研究结论:(1)制动荷载作用下的轨道结构纵向力由拉力逐渐变为压力,纵向位移呈现先增后减的趋势;(2)需根据不同的检算部件选取最不利的荷载工况;(3)在检算时需考虑轨道板/底座板刚度的折减,且必须保证其施工质量;(4)采用小阻力扣件时轨板快速相对位移的剧增易带动轨下胶垫滑出;(5)固结机构、桥墩/台采用较大纵向刚度,并保持滑动层的良好滑动性能有利于各轨道及桥梁结构的受力与变形;(6)该研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路的设计、施工及运营维护提供参考。  相似文献   

13.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

14.
温度荷载作用下大跨度桥梁与无砟道岔相互作用研究   总被引:1,自引:0,他引:1  
将道岔、轨道板、梁体和墩台视为一个相互耦合的系统,建立了计算温度荷载作用下桥梁与无砟道岔相互作用的有限元力学模型。根据变分原理和形成矩阵的"对号入座"法则建立了模型求解的非线性方程组。研究了大跨度桥梁上铺设无砟道岔时,钢轨与墩台温度力与位移的规律。计算结果表明:无砟道岔铺设于大跨度桥梁上时,必须设置钢轨伸缩调节器;无砟道岔铺设于连续梁桥上并设置钢轨伸缩调节器时,岔区内钢轨位移增大;采用连续刚构桥,有利于减小岔区内钢轨位移。  相似文献   

15.
研究目的:因桥上无缝线路梁轨相互作用较为复杂,桥梁和轨道结构的受力与变形特性成为国内外学者的热点研究问题。为研究温度荷载、列车荷载和制动荷载作用下轨道结构的受力与变形规律及影响因素,根据嵌入式轨道的特点,本文通过建立嵌入式轨道桥上无缝线路有限元模型,计算伸缩力、挠曲力和制动力三种工况下轨道结构的受力与变形情况,并分析梁体温差、高分子材料纵向阻力和墩台纵向刚度对伸缩力的影响。研究结论:(1)嵌入式轨道的线路纵向阻力和垂向刚度均为线性变化,且轨板相对位移限值为6.2 mm;(2)轨道结构的受力和变形均随着梁体温差的增加而线性增加,允许梁体温差为38℃;随着线路纵向阻力的增加,钢轨纵向位移和伸缩力逐渐增大,而轨板相对位移则逐渐减小;桥梁墩台纵向刚度对轨道结构的受力和变形影响较小;(3)在挠曲力和制动力工况下,轨板相对位移和钢轨附加力均较小,故在设计时应重点关注伸缩力工况;(4)当梁体温差和轨温变化幅度为30℃时,钢轨强度和轨板相对位移均满足要求,因此在32 m简支梁上铺设有轨电车嵌入式轨道无缝线路是可行的;(5)本研究成果对桥上有轨电车嵌入式轨道设计具有参考价值。  相似文献   

16.
为研究连续梁桥上有轨电车嵌入式轨道结构在温度荷载作用下的受力变形特性及影响因素,采用线性弹簧模拟梁轨相互作用,建立嵌入式轨道-桥-墩一体化有限元计算模型。以实际工况为例,确定伸缩工况下合理的连续梁两侧简支梁跨数,并探讨梁体温差、高分子材料纵向阻力、小阻力高分子材料铺设范围和桥梁支座布置方案对轨道结构伸缩受力和变形分布规律的影响。研究结果表明:对于多联连续梁桥,当计算伸缩工况时,可取连续梁两侧各5跨简支梁作为边界条件;随着高分子材料纵向阻力的增加,伸缩力逐渐增大,而轨板相对位移逐渐减小,故在设计嵌入式轨道桥上无缝线路时,应综合考虑轨道结构受力和变形的要求;针对本文工况,当从减小钢轨附加伸缩力的角度考虑时,应该选择在连续梁桥左边跨和相邻一跨简支梁上铺设小阻力高分子材料;当桥梁温度跨度较大时,可将连续梁相邻一跨简支梁的固定支座放置在连续梁桥的边墩处,从而使得连续梁桥温度跨度减小。  相似文献   

17.
新建连云港至盐城铁路灌河特大桥为客货共线的双线铁路桥,桥上敷设有砟轨道,采用一次敷设跨区间无缝线路。桥梁主跨结构为(120+228+120)m连续钢桁柔性拱,温度跨度大且结构复杂。采用有限元法建立桥上无缝线路空间耦合模型,分别对桥上敷设常阻力扣件、小阻力扣件和设置伸缩调节器三种工况进行检算,以确定是否需要采用钢轨伸缩调节器以及其布设位置。  相似文献   

18.
建立一种桥上CRTSⅡ型板式无砟轨道纵向力学模型,取消部分区段的扣件纵向阻力以模拟维护作业对轨道和桥梁受力的影响。利用所建力学模型对一座80 m+128 m+80 m大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行线路维护作业的纵向力变化进行分析,结果发现:钢轨纵向力最大变化值为64.82 k N,相当于轨温变化3.38℃产生的温度力;底座板纵向力最大变化值为52.75 k N;剪力齿槽和桥梁固定支座的纵向力变化均在20 k N以下。松开扣件维护作业对钢轨、底座板、剪力齿槽和固定支座的强度影响可承受,按现行《高速铁路无砟轨道线路维修规则》对大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行维护作业是可行的。  相似文献   

19.
宫万国 《铁道建筑》2012,(10):120-123
桥上无缝道岔设计同时涉及桥梁—钢轨相互作用力及道岔基本轨—尖轨相互作用力两方面问题。对典型桥上咽喉区普通桥上无缝线路及桥上无缝道岔群进行了对比检算,检算结果表明,桥上无缝道岔较一般区间桥上无缝线路钢轨附加力明显增大,桥上无缝道岔设计应同时兼顾道岔与桥梁孔跨布置。无缝道岔布置于连续梁上时,其钢轨伸缩附加力较区间桥上无缝线路增幅要大,尤其在咽喉区多联连续梁且两组道岔对向布置情况最为不利,如道岔对向布置情况不可避免,此时应在两连续梁间插入简支梁,道岔距梁缝应保持一定距离,以尽量减少连续梁温度跨度与道岔限位装置钢轨附加力叠加效应。  相似文献   

20.
为建立能客观反映桥上无砟轨道无缝道岔实际受力情况的计算分析模型,在吸收国内研究成果的基础上,基于有限单元法,建立桥上无砟轨道,无缝道岔伸缩力的计算模型.分析轨温变化幅度,扣件阻力,限位值等轨道结构参数对无缝道岔受力及变形的影响,得出桥上无砟轨道无缝道岔的受力和变形的特点,对无缝道岔的设计和养护维修有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号