首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以轨道为参考建立世界坐标系,以车体为参考建立摄像机坐标系。考虑摄像机镜头畸变,建立摄像机非线性模型,采用基于最小二乘法的共面标定方法标定摄像机,求解摄像机参数矩阵。根据车体振动特性,推导基于计算机视觉技术的车体振动偏移补偿计算方法,并将该补偿方法成功运用于接触轨检测车。通过广州地铁四号线区间运行数据,验证了该补偿方法能够有效提高系统检测精度。  相似文献   

2.
车辆运行品质轨边动态监测系统(TPDS)通过监测车辆运行过程中轮轨间的垂直力和横向力来对车辆运行状态进行评判。本文研制的车载标定设备用于标定TPDS测试的轮轨间垂直力。该设备加装在红外线检测车上,检测车经过TPDS测试平台时TPDS对检测车轮轨间垂直力进行测量。通过对测量值和检测车实际质量进行分析得出TPDS垂直力的标定值,从而实现移动设备对固定设施的标定。车载标定设备应用于现场不仅快速、准确,而且便捷、经济。  相似文献   

3.
轨道检测车对轨道线路状态进行动态检测,检查线路不良状态类型、程度和位置,指导线路养护维修,保障铁路运输安全.其轨道检测系统在使用前需要进行试验和标定,目的是将检测系统设备部件与整个系统进行功能验证、试运行和参数标定.试验和标定设备对精度、稳定性要求较高,一套完备的标定与试验手段是检测系统运行的最基本条件.  相似文献   

4.
杨赫 《中国铁路》2012,(9):56-58
通过对隧道限界检测车工作原理的分析,论述对隧道限界检测车进行动态标定的原理、方法和过程,并以此为基础提出了基于数字图像采集和处理的隧道限界检测车动态标定方案,提高隧道限界检测车的检测精度。  相似文献   

5.
城轨综合检测车检测系统采用惯性测量原理、机器视觉及激光扫描等非接触测量技术,集轨道几何及动态响应、接触轨检测、隧道限界检测和轮轨监视等功能于一体,并应用无线射频技术(RFID)进行精确里程定位,可快速高效地对城轨交通轨道几何、接触轨状态、隧道及线路周边建筑进行检测。可检测项目包含轨道几何的轨距、轨向、高低、水平、曲率、磨耗等,以及接触轨导高、拉出值和隧道限界。城轨综合检测车经静态调试和动态验证,各系统检测指标满足检测要求。  相似文献   

6.
无锡地铁综合检测车检测系统采用惯性测量原理、机器视觉及激光扫描等非接触测量技术,集轨道几何及动态响应、接触轨检测、隧道限界检测和轮轨监视等功能于一车,并应用RFID无线射频技术进行精确里程定位,可快速高效地对城市轨道交通的轨道几何、接触轨状态和隧道及线路周边建筑进行检测。综合检测车各检测系统经静态调试和动态验证,检测指标满足检测要求,已正式应用于无锡地铁的定期检测中。  相似文献   

7.
针对现有的接触轨不平顺检测不能有效地利用接触轨检测数据对接触轨线路质量进行评价分析提出了接触轨质量指数(CRQI)及其评价方法,对接触轨不平顺分区段进行管理。利用接触轨检测车在广州地铁4号线金洲站-黄村站上行区间的检测数据,分别统计其CRQI,以及CRQI中方向不平顺和高低不平顺的频数分布和累计分布,计算方向不平顺和高低不平顺在CRQI中的权重,并分别探讨CRQI,以及CRQI中方向不平顺和高低不平顺管理值。  相似文献   

8.
基于激光摄像技术的钢轨磨耗截面积测量方法研究   总被引:1,自引:0,他引:1  
磨损后的钢轨轨头轮廓极不规整,传统钢轨磨耗计算方法无法准确表征磨损后的钢轨轮廓全貌。最新轨道检测车采用激光摄像技术,实现了钢轨轮廓连续在线检测。本文提出在现有的轨道检测车中添加钢轨磨耗截面积检测功能,以克服传统钢轨磨耗测量存在的不足。建立用于钢轨磨耗检测的激光摄像式传感器标定计算模型。对钢轨磨耗截面积测量中标准钢轨轮廓曲线解析式求解、动态钢轨轮廓基准点对齐、钢轨磨耗截面积数值计算等关键问题进行了详细的阐述。选取深圳地铁龙岗线GJ-2型轨道检测车,在六约至丹竹头区间进行试验。分别采用传统钢轨磨耗计算方法和钢轨磨耗截面积计算方法,同时对左右股钢轨磨耗进行检测,并给出采用上述不同方法在该区间2000m距离检测的数据。  相似文献   

9.
车辆运行品质轨边动态监测系统(TPDS)通过监测车辆运行过程中轮轨间的垂直力和横向力来对车辆运行状态进行评判。本文研制的车载标定设备用于标定TPDS测试的轮轨间垂直力。该设备加装在红外线检测车上,检测车经过TPDS测试平台时TPDS对检测车轮轨间垂直力进行测量。通过对测量值和检测车实际质量进行分析得出TPDS垂直力的标定值,从而实现移动设备对固定设施的标定。车载标定设备应用于现场不仅快速、准确,而且便捷、经济。  相似文献   

10.
概要介绍广州地铁综合检测车第三轨检测系统,包括检测系统结构、检测原理、检测系统信号流程图、检测系统数据处理以及显示、系统标定等。  相似文献   

11.
为满足世界首列重载综合检测车的系统标定需求,朔黄铁路发展有限责任公司建设了国内首条重载综合检测标定试验线,用于车载检测系统的静态标定和低速动态标定。试验线包含轨道几何检测标定段、钢轨断面磨耗检测标定段、路基道床检测标定段、钢轨探伤检测标定段、信号检测标定段、建筑限界模拟侵限试验物、里程定位电子标签等。综合检测标定试验线建成应用3年来,对车载检测系统的功能和精度进行了验证,为基础设施养护维修提供了准确有效的检测数据。  相似文献   

12.
在检测车经过铁路车辆运行品质轨边动态监测系统(TPDS)设备测试平台时,车载TPDS动态检测系统利用液压控制装置和测力传感器测试出检测车实时质量。通过将其与地面TPDS设备测试的检测车质量进行比对,对地面TPDS设备测试的轮轨垂直力加以标定,从而达到动态评估地面TPDS设备状态的目的。文章以实际检测数据为依据,利用统计分析方法对检测数据的稳定性进行分析,并结合地面TPDS设备真实状态,对车载TPDS动态检测系统测试数据进行了验证。  相似文献   

13.
北京地铁引进轨道检查系统中加入了能检测上接触式接触轨几何状态的功能,在国内首次应用。该检测系统是根据北京地铁接触轨的集电方式、安装位置及精度要求等内容进行设计的,主要对其检测方法、检测原理以及实际应用效果进行分析研究。  相似文献   

14.
目的:为确保接触轨供电系统安全服役,指导运营养护维修,特提出一种地铁新型车载式供电接触轨几何参数检测装置。方法:详细阐述其定义、组成、检测原理、软件功能等,并验证检测装置的精度和现场实际应用情况。通过长期跟踪试验和大量的数据分析,验证供电接触轨检测装置的实际应用精度,具体采用检测车以30 km/h速度往返检测2遍,以采集接触轨的几何参数数据,利用分析程序导出4次检测数据,提取定位点支柱处工作高度和偏移值,同时人工测量该段数据,进行包括接触轨工作高度、偏移值的准确度动静态对比和检测系统本身重复性误差对比。结果及结论:动静态对比50个定位点测量值,其中:48个工作高度测量值动静态误差在±2 mm以内的占比96%,仅2个工作高度测量值动静态误差在±3 mm以外(占比4%),精度满足标准要求;50个偏移值动静态误差均在±2 mm内,占比100%,满足要求。对比50个定位点4次测量值,工作高度重复性误差在±2 mm以内,占比96%,满足精度要求;偏移值重复性误差在±2 mm以内,占比99%,满足精度要求。地铁新型车载式供电接触轨几何参数检测装置在6条正线接触轨上已正常运用近1年半,约完成130次...  相似文献   

15.
提出一种基于单目摄像机标定原理的非接触式接触网几何参数修正检测方法。通过分析检测车振动对检测系统的影响,推导几何参数补偿公式,建立接触线几何模型的卡尔曼滤波方程,达到修正接触线几何参数检测值的目的。最后,以某检测车的实际运行数据验证了该方法有效性和准确性。  相似文献   

16.
基于线阵相机的接触轨几何参数动态检测系统,采用高速线阵相机,通过光切法,获取接触轨目标图像,采用双目成像检测原理,同时结合车体偏移补偿,精确测量接触轨几何参数,采用实时定位系统,对检测数据进行定位。  相似文献   

17.
阐述集电靴与接触轨的结构改进、运行现状和标准建设,以及集电靴、接触轨和靴轨接口的测试与仿真技术,并展望集电靴与接触轨集电系统的发展方向。现有集电靴种类较多,尚未形成通用的力学模型,需进一步构建集电靴动态性能试验台获取其关键力学参数。集电靴与接触轨的动态测量装置尚需进一步标定,以确保测试数据的准确性。集电靴与接触轨的动态仿真尚需实际测量数据验证其有效性。集电靴与接触轨系统接口的标准尚需进一步完善。  相似文献   

18.
基于线阵相机的接触轨几何参数动态检测系统,采用高速线阵相机,通过光切法,获取接触轨目标图像;采用双目成像检测原理,同时结合车体偏移补偿,精确测量接触轨几何参数;采用实时定位系统,对检测数据进行定位。  相似文献   

19.
随着我国铁路运营里程不断增加,越来越多的铁路检测车投入使用,传统铁路检测车管理模式已无法满足各级运用管理人员信息化、规范化的要求,基于移动互联技术的铁路检测车运用维护信息系统应运而生。该系统可将各类铁路检测车运载工具和检测系统相关信息进行整合,使用户方便快捷地记录、获取所管理设备的运用状态,提升铁路检测车运用维护水平和服务品质。  相似文献   

20.
基于面阵相机的接触轨几何参数检测系统   总被引:1,自引:0,他引:1  
设计了基于面阵相机的地铁接触轨几何参数动态检测系统,分析了动态检测原理和流程,采用激光三角法测量接触轨几何参数,作为接触轨是否出现故障的判断依据。该系统结构合理,简便易行,便于实际操作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号