首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
随着环境友好型铁路建设的发展要求,声屏障作为有效的降噪手段得到广泛的应用,脉动力是声屏障动力设计中必须控制的因素。基于ALE方法构建高速列车、声屏障、空气三维数值模型,对列车经过声屏障时产生的脉动力过程进行仿真。分析声屏障脉动力分布特性及脉动力时程变化特性,分析列车运行速度、声屏障高度、与股道中心线距离等因素对脉动力的影响规律,数值模型求解采用并行计算技术,分析并行区域分解方案对并行效率及加速比的影响。本文研究结果为高速铁路声屏障结构设计提供参考依据。  相似文献   

2.
脉动力是声屏障动力设计的控制因素,只有确定了客运专线脉动力大小才能开展下一步的声屏障结构设计。采用可压缩三维流动模型,利用大型通用流体计算软件Fluent对列车高速通过时产生的脉动力进行模拟计算,对脉动力的作用特点、脉动力对声屏障结构的影响进行研究分析,结论为:列车引起的最大正负压力差达1 500 Pa,将对声屏障和地基连接部件产生重大影响,线间距对声屏障压力有重要影响,车型对声屏障压力影响不大。  相似文献   

3.
针对高速铁路声屏障的高速列车脉动风荷载问题,介绍既有研究资料,并进行高速列车以350km/h,380 km/h的速度通行声屏障区域的CFD计算分析.结果表明,350 km/h速度下最大风压力为1 474 Pa,380 km/h速度下最大风压力为1 707 Pa.声屏障底部承受的风荷载最大,并沿高度向上先缓慢减小至声屏障一半高度后较快减小.沿纵向,声屏障的脉动风压在列车入口处最小,沿着列车前进方向50 m处迅速增大,后稍减小并在100 ~400 m处保持平稳.  相似文献   

4.
针对高速铁路封闭式声屏障在列车风与横风作用下的风压荷载问题,采用中南大学自主研发的横风-移动列车风洞试验系统,研究横风和列车风作用下声屏障的风压荷载分布.研究结果表明:圆形断面封闭式声屏障外壁风压系数分布沿环向先减小后增大,与单圆柱的风压分布大致相似,给定风速下最大负风压系数-3.38;单车通过声屏障时脉动风压幅值与车速平方近似成正比,同一截面风压沿环向非均匀分布,近侧的压力峰值高于远侧,最大相差16%;2车交会时,交会区域风压峰值明显增大且极值风压出现在交会截面,其值约为单车通过时极值风压的2倍.  相似文献   

5.
根据列车脱轨能量随机分析理论,实现高速铁路无砟轨道桥梁上的高速列车脱轨全过程分析,计算高速列车抗脱轨安全系数。在不考虑列车纵向冲击,仅考虑列车脱轨摇摆力作用下,推导出高速铁路桥梁防撞墙受力计算公式。结果表明:高速列车在设计车速下的抗脱轨安全系数为2.0以上,脱轨摇摆力为630kN,防撞墙所受到的撞击力为33 002.4kN。鉴于高速铁路无砟轨道桥梁上的高速列车运行安全性完全有保障,且即使有意外情况发生,防撞墙亦无法防止列车脱轨后冲出桥面,因此,建议取消防撞墙。  相似文献   

6.
针对高速铁路声屏障的安全可靠性,从气动效应角度阐述其研究现状、研究成果及存在的挑战,并基于我国高速铁路声屏障应用场景,探讨列车脉动力的主要影响因素和声屏障结构的振动特性,结合技术标准中与气动效应相关的要求和规定,提出完善标准体系的相关建议,并对未来的重点研究方向进行展望。结果表明:列车脉动力受列车运行速度、列车车型及声屏障设置位置等因素的共同影响,列车脉动力与运行速度的平方基本服从线性关系;声屏障气动效应还与车头流线型、车体截面形状等列车气动性能参数相关,相同速度条件下不同车型的脉动力差异可达45%;在列车脉动力作用下,声屏障钢立柱以横向振动为主,呈现典型受弯构件的特征,而单元板以整体往复横向运动为主,振幅受安装状态的影响显著,声屏障动力性能评估重点为结构的低频振动;未来可结合声屏障结构振动特征和服役性能变化情况,深化声屏障气动荷载产生机理和动力分析方法的研究,探索声屏障服役性能演变机理和规律,完善声屏障结构安全性能检测评估体系,发展快速高效检测技术。  相似文献   

7.
基于有限体积法,采用流体动力学计算软件建立了列车通过设置声屏障桥梁时的空气动力学模型.应用滑移网格技术和大涡模拟法,计算了声屏障的三维非定常可压缩外流场,获得了不同速度、不同车头长度和不同车体长度列车通过桥梁时轨面以上2.15 m高处声屏障脉动压力极值、脉动压力时程曲线等.研究结果表明:声屏障所受脉动风压极值基本与车速的平方成正比;在车速相同情况下,6 m长车头列车产生的脉动风压比12 m长车头列车约大10%;200 m长车体列车通过时产生的脉动风压比100 m长车体列车约大7%.  相似文献   

8.
针对350~400km·h~(-1)高速列车作用于声屏障的脉动风荷载问题,基于三维非稳态的k-ε两方程紊流模型,采用移动网格的数值仿真计算多种车速、多种屏轨距条件下列车通过声屏障区域的动态风场过程,得出声屏障各部位的脉动风荷载时程曲线等各类结果数据及多种参数的影响规律,并与实测资料进行对比分析。结果表明:300~400km·h~(-1)列车脉动风荷载随列车速度的增加而加速增大,与声屏障至线路中心距离呈现近双曲线性反比关系,风压值分布沿声屏障高度呈现底部大、顶部小的规律;理论计算风压值及其与实测列车脉动风荷载时程曲线形状、参数影响规律等均相符较好,部分计算风压量值略大于实测值,原因在于计算中列车及声屏障模型光滑表面的模拟方法忽略了实际粗糙表面的风阻等因素。在仿真与实测的基础上,提出380~400km·h~(-1)高速列车脉动风荷载的最大风压取值建议及广义振动频率范围1.96~4.79Hz等动力设计建议。  相似文献   

9.
随着运营列车时速的提高和日行列车对数的增加,作用在轨道两侧声屏障上的列车气动力将急剧增大,对声屏障的结构性能有了更高的要求。文章提出了一种新型的桥梁整体式预应力混凝土声屏障,并采用有限元软件分析、研究了新型桥梁整体式预应力混凝土声屏障在列车时速350 km条件下结构的动力响应,得到了不同阻尼比条件下的动力放大系数;检算了后浇竖墙的强度和裂缝,并设计了桥梁整体式预应力混凝土声屏障最小截面,可为声屏障的应用提供有益参考。  相似文献   

10.
高速铁路桥上的防风屏障会受到列车运行产生的脉动气冲力作用,防风屏障在脉动气冲力作用下的振动是防风屏障设计必须考虑的问题。本文建立了防风屏障有限元模型,考虑自然风荷载、结构自重和列车引起的脉动风荷载,以兰新铁路第二双线桥上防风屏障为实例,分析防风屏障各关键节点处的振动响应。结果表明:考虑自然风及车致气动力的脉动特性会显著增加防风屏障的动力响应;分析车致气动力对防风屏障的结构响应时应将自然风基本风压作为静载同时计算;另外应特别关注挡风板的振动,其响应远高于立柱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号