首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制约小件运输发展的瓶颈之一是站到站运输与客户门到门需求之间的矛盾,目前道路客运企业正大力发展门到门的取送货业务,但缺少一套切实可行的取送货运输组织调度方案,基于此,文章建立了考虑客户时效性需求的车辆路径调度数学模型并设计了一种改进的遗传算法进行求解。通过实例证明该算法可以求得满意解,为道路客运企业发展小件快运的"最后一公里"取送货服务提供运输组织调度方案参考。  相似文献   

2.
Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). This paper first proposes a new time-discretized multi-commodity network flow model for the VRPPDTW based on the integration of vehicles’ carrying states within space–time transportation networks, so as to allow a joint optimization of passenger-to-vehicle assignment and turn-by-turn routing in congested transportation networks. Our three-dimensional state–space–time network construct is able to comprehensively enumerate possible transportation states at any given time along vehicle space–time paths, and further allows a forward dynamic programming solution algorithm to solve the single vehicle VRPPDTW problem. By utilizing a Lagrangian relaxation approach, the primal multi-vehicle routing problem is decomposed to a sequence of single vehicle routing sub-problems, with Lagrangian multipliers for individual passengers’ requests being updated by sub-gradient-based algorithms. We further discuss a number of search space reduction strategies and test our algorithms, implemented through a specialized program in C++, on medium-scale and large-scale transportation networks, namely the Chicago sketch and Phoenix regional networks.  相似文献   

3.
This paper investigates an issue for optimizing synchronized timetable for community shuttles linked with metro service. Considering a passenger arrival distribution, the problem is formulated to optimize timetables for multiple community shuttle routes, with the objective of minimizing passenger’s schedule delay cost and transfer cost. Two constraints, i.e., vehicle capacity and fleet size, are modeled in this paper. The first constraint is treated as soft, and the latter one is handled by a proposed timetable generating method. Two algorithms are employed to solve the problem, i.e., a genetic algorithm (GA) and a Frank–Wolfe algorithm combined with a heuristic algorithm of shifting departure times (FW-SDT). FW-SDT is an algorithm specially designed for this problem. The simulated and real-life examples confirm the feasibility of the two algorithms, and demonstrate that FW-SDT outperforms GA in both accuracy and effectiveness.  相似文献   

4.
Dial-a-ride problems are concerned with the design of efficient vehicle routes for transporting individual persons from specific origin to specific destination locations. In real-life this operational planning problem is often complicated by several factors. Users may have special requirements (e.g. to be transported in a wheelchair) while service providers operate a heterogeneous fleet of vehicles from multiple depots in their service area. In this paper, a general dial-a-ride problem in which these three real-life aspects may simultaneously be taken into account is introduced: the Multi-Depot Heterogeneous Dial-A-Ride Problem (MD-H-DARP). Both a three- and two-index formulation are discussed. A branch-and-cut algorithm for the standard dial-a-ride problem is adapted to exactly solve small problem instances of the MD-H-DARP. To be able to solve larger problem instances, a new deterministic annealing meta-heuristic is proposed. Extensive numerical experiments are presented on different sets of benchmark instances for the homogeneous and the heterogeneous single depot dial-a-ride problem. Instances for the MD-H-DARP are introduced as well. The branch-and-cut algorithm provides considerably better results than an existing algorithm which uses a less compact formulation. All seven previously unsolved benchmark instances for the heterogeneous dial-a-ride problem could be solved to optimality within a matter of seconds. While computation times of the exact algorithm increase drastically with problem size, the proposed meta-heuristic algorithm provides near-optimal solutions within limited computation time for all instances. Several best known solutions for unsolved instances are improved and the algorithm clearly outperforms current state-of-the-art heuristics for the homogeneous and heterogeneous dial-a-ride problem, both in terms of solution quality and computation time.  相似文献   

5.
This paper addresses the scheduling of supply chains with interrelated factories consisting of a single vendor and multiple customers. In this research, one transporter is available to deliver jobs from vendor to customers, and the jobs can be processed by batch. The problem studied in this paper focuses on a real-case scheduling problem of a multi-location hospital supplied with a central pharmacy. The objective of this work is to minimize the total cost, while satisfying the customer’s due dates constraints. A mathematical formulation of the problem is given as a Mixed Integer Programming model. Then, a Branch-and-Bound algorithm is proposed as an exact method for solving this problem, a greedy local search is developed as a heuristic approach, and a hybrid Genetic Algorithm is presented as a meta-heuristic. Computation experiments are conducted to highlight the performance of the proposed methods.  相似文献   

6.
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and meta-heuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.  相似文献   

7.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the impact of using a new intelligent vehicle technology on the performance and total cost of a European port, in comparison with existing vehicle systems like trucks. Intelligent autonomous vehicles (IAVs) are a new type of automated guided vehicles (AGVs) with better maneuverability and a special ability to pick up/drop off containers by themselves. To identify the most economical fleet size for each type of vehicle to satisfy the port’s performance target, and also to compare their impact on the performance/cost of container terminals, we developed a discrete-event simulation model to simulate all port activities in micro-level (low-level) details. We also developed a cost model to investigate the present values of using two types of vehicle, given the identified fleet size. Results of using the different types of vehicles are then compared based on the given performance measures such as the quay crane net moves per hour and average total discharging/loading time at berth. Besides successfully identifying the optimal fleet size for each type of vehicle, simulation results reveal two findings: first, even when not utilising their ability to pick up/drop off containers, the IAVs still have similar efficacy to regular trucks thanks to their better maneuverability. Second, enabling IAVs’ ability to pick up/drop off containers significantly improves the port performance. Given the best configuration and fleet size as identified by the simulation, we use the developed cost model to estimate the total cost needed for each type of vehicle to meet the performance target. Finally, we study the performance of the case study port with advanced real-time vehicle dispatching/scheduling and container placement strategies. This study reveals that the case study port can greatly benefit from upgrading its current vehicle dispatching/scheduling strategy to a more advanced one.  相似文献   

9.
Weather conditions have a strong effect on the operation of vessels and unavoidably influence total time at sea and associated transportation costs. The velocity and direction of the wind in particular may considerably affect travel speed of vessels and therefore the reliability of scheduled maritime services. This paper considers weather effects in containership routing; a stochastic model is developed for determining optimal routes for a homogeneous fleet performing pick-ups and deliveries of containers between a hub and several spoke ports, while incorporating travel time uncertainties attributed to the weather. The problem is originally formulated as a chance-constrained variant of the vehicle routing problem with simultaneous pick-ups and deliveries and time constraints and solved using a genetic algorithm. The model is implemented to a network of island ports of the Aegean Sea. Results on the application of algorithm reveal that a small fleet is sufficient enough to serve network’s islands, under the influence of minor delays. A sensitivity analysis based on alternative scenarios in the problem’s parameters, leads to encouraging conclusions with respect to the efficiency and robustness of the algorithm.  相似文献   

10.
The purpose of this paper to present a cooperative scheduling algorithm for solving the Dynamic Pickup and Delivery Problem with Time Windows (DPDPTW). The idea behind cooperative waiting strategies is to calculate simultaneously the waiting times for all nodes in the solution. Classical non‐cooperative scheduling algorithms perform the scheduling for each route independently of the scheduling of the other routes. We present the Cooperative Scheduling Problem (CSP) based on the elliptical areas generated by vehicles waiting at their nodes. The CSP is solved by means of a genetic algorithm and is evaluated by using a set of benchmarks based on real‐life data found in the literature. Initially, two waiting strategies are presented: Wait‐Early‐Time scheduling and Balanced‐Departure scheduling. Extensive empirical simulations have been carried out by analyzing the degree of dynamism and the average waiting time, a new concept defined to take into account the gap between the time windows of pickup and delivery nodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.

In urban areas where transit demand is widely spread, passengers may be served by an intermodal transit system, consisting of a rail transit line (or a bus rapid transit route) and a number of feeder routes connecting at different transfer stations. In such a system, passengers may need one or more transfers to complete their journey. Therefore, scheduling vehicles operating in the system with special attention to reduce transfer time can contribute significantly to service quality improvements. Schedule synchronization may significantly reduce transfer delays at transfer stations where various routes interconnect. Since vehicle arrivals are stochastic, slack time allowances in vehicle schedules may be desirable to reduce the probability of missed connections. An objective total cost function, including supplier and user costs, is formulated for optimizing the coordination of a general intermodal transit network. A four-stage procedure is developed for determining the optimal coordination status among routes at every transfer station. Considering stochastic feeder vehicle arrivals at transfer stations, the slack times of coordinated routes are optimized, by balancing the savings from transfer delays and additional cost from slack delays and operating costs. The model thus developed is used to optimize the coordination of an intermodal transit network, while the impact of a range of factors on coordination (e.g., demand, standard deviation of vehicle arrival times, etc) is examined.  相似文献   

12.
The level of service on public transit routes is very much affected by the frequency and vehicle capacity. The combined values of these variables contribute to the costs associated with route operations as well as the costs associated with passenger comfort, such as waiting and overcrowding. The new approach to the problem that we introduce combines both passenger and operator costs within a generalized newsvendor model. From the passenger perspective, waiting and overcrowding costs are used; from the operator’s perspective, the costs are related to vehicle size, empty seats, and lost sales. Maximal passenger average waiting time as well as maximal vehicle capacity are considered as constraints that are imposed by the regulator to assure a minimal public transit service level or in order to comply with other regulatory considerations. The advantages of the newsvendor model are that (a) costs are treated as shortages (overcrowding) and surpluses (empty seats); (b) the model presents simultaneous optimal results for both frequency and vehicle size; (c) an efficient and fast algorithm is developed; and (d) the model assumes stochastic demand, and is not restricted to a specific distribution. We demonstrate the usefulness of the model through a case study and sensitivity analysis.  相似文献   

13.
This study introduces a new practical variant of the combined routing and loading problem called the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints (3L-FCVRP). It presents a meta-heuristic algorithm for solving the problem. The aim is to design routes for a fleet of homogeneous vehicles that will serve all customers, whose demands are formed by a set of three-dimensional, rectangular, weighted items. Unlike the well-studied capacitated vehicle routing problem with 3D loading constraints (3L-CVRP), the objective of the 3L-FCVRP is to minimize total fuel consumption rather than travel distance. The fuel consumption rate is assumed to be proportionate to the total weight of the vehicle. A route is feasible only if a feasible loading plan to load the demanded items into the vehicle exists and the loading plan must satisfy a set of practical constraints.To solve this problem, the evolutionary local search (ELS) framework incorporating the recombination method is used to explore the solution space, and a new heuristic based on open space is used to examine the feasibility of the solutions. In addition, two special data structures, Trie and Fibonacci heap, are adopted to speed up the procedure. To verify the effectiveness of our approach, we first test the ELS on the 3L-CVRP, which can be seen as a special case of the 3L-FCVRP. The results demonstrate that on average ELS outperforms all of the existing approaches and improves the best-known solutions for most instances. Then, we generate data for 3L-FCVRP and report the detailed results of the ELS for future comparisons.  相似文献   

14.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   

15.
In the US, freight railways are one of the major means to transport goods from ports to inland destinations. According to the Association of American Railroad’s study, rail companies move more than 40% of the nation’s total freight. Given the fact that the freight railway industry is already running without much excess capacity, better planning and scheduling tools are needed to effectively manage the scarce resources, in order to cope with the rapidly increasing demand for railway transportation. This research develops optimization-based approaches for scheduling of freight trains. Two mathematical formulations of the scheduling problem are first introduced. One assumes the path of each train, which is the track segments each train uses, is given and the other one relaxes this assumption. Several heuristics based on mixtures of the two formulations are proposed. The proposed algorithms are able to outperform two existing heuristics, namely a simple look-ahead greedy heuristic and a global neighborhood search algorithm, in terms of railway total train delay. For large networks, two algorithms based on the idea of decomposition are developed and are shown to significantly outperform two existing algorithms.  相似文献   

16.
Transportation CO2 emissions are expected to increase in the following decades, and thus, new and better alternatives to reduce emissions are needed. Road transport emissions are explained by different factors, such as the type of vehicle, delivery operation and driving style. Because different cities may have conditions that are characterized by diversity in landforms, congestion, driving styles, etc., the importance of assigning the proper vehicle to serve a particular region within the city provides alternatives to reduce CO2 emissions. In this article, we propose a new methodology that results in assigning trucks to deliver in areas such that the CO2 emissions are minimized. Our methodology clusters the delivery areas based on the performance of the vehicle fleet by using the k-means algorithm and Tukey’s method. The output is then used to define the optimal CO2 truck-area assignment. We illustrate the proposed approach for a parcel company that operates in Mexico City and demonstrate that it is a practical alternative to reduce transportation CO2 emissions by matching vehicle type with delivery areas.  相似文献   

17.
The study formulated a ferry network design problem by considering the optimal fleet size, routing, and scheduling for both direct and multi-stop services. The objective function combines both the operator and passengers’ performance measures. Mathematically, the model is formulated as a mixed integer multiple origin–destination network flow problem with ferry capacity constraints. To solve this problem of practical size, this study developed a heuristic algorithm that exploits the polynomial-time performance of shortest path algorithms. Two scenarios of ferry services in Hong Kong were solved to demonstrate the performance of the heuristic algorithm. The results showed that the heuristic produced solutions that were within 1.3% from the CPLEX optimal solutions. The computational time is within tens of seconds even for problem size that is beyond the capability of CPLEX.  相似文献   

18.
Emerging transportation network services, such as customized buses, hold the promise of expanding overall traveler accessibility in congested metropolitan areas. A number of internet-based customized bus services have been planned and deployed for major origin-destination (OD) pairs to/from inner cities with limited physical road infrastructure. In this research, we aim to develop a joint optimization model for addressing a number of practical challenges for providing flexible public transportation services. First, how to maintain minimum loading rate requirements and increase the number of customers per bus for the bus operators to reach long-term profitability. Second, how to optimize detailed bus routing and timetabling plans to satisfy a wide range of specific user constraints, such as passengers’ pickup and delivery locations with preferred time windows, through flexible decision for matching passengers to bus routes. From a space-time network modeling perspective, this paper develops a multi-commodity network flow-based optimization model to formulate a customized bus service network design problem so as to optimize the utilization of the vehicle capacity while satisfying individual demand requests defined through space-time windows. We further develop a solution algorithm based on the Lagrangian decomposition for the primal problem and a space-time prism based method to reduce the solution search space. Case studies using both the illustrative and real-world large-scale transportation networks are conducted to demonstrate the effectiveness of the proposed algorithm and its sensitivity under different practical operating conditions.  相似文献   

19.
Abstract

With the growth in population and development of business activities in Hong Kong, the range and level of services provided by Hongkong Post have multiplied. However, the schedule of its postal vehicles, including mail collection and delivery, is still constructed manually on a daily basis, based on the experience of staff and transportation reviews. In this paper, the problem of scheduling a set of n collection points (District Post Offices) from a depot (General Post Office) in Hong Kong Island is addressed. The objectives pursued are the maximization of resource utilization and minimization of operation costs. In other words, the variable cost is expected to be reduced. To achieve these goals, an integer linear programming (IP) model of the vehicle routing problem (VRP) is developed in an effort to obtain optimal solutions. As the model involves computational complexity, a commercial software package CPLEX is used to solve the problems efficiently. The results show that the proposed model can produce optimal vehicle routes and schedules.  相似文献   

20.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号