首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于半赫兹接触的车轮磨耗计算   总被引:3,自引:1,他引:2  
为了分析轮轨接触模型对车轮磨耗计算的影响,基于半赫兹接触、赫兹接触和Kalker完全理论程序CONTACT分别计算轮轨接触应力和接触斑形状,并在Kalker简化理论基础上求解半赫兹接触的蠕滑力;基于Archard磨耗模型,计算车轮磨耗深度在踏面上的分布.计算结果表明:由于半赫兹接触考虑了接触斑内曲率的变化,则接触斑形状和最大接触应力比赫兹接触更接近于CONTACT计算结果;在大自旋蠕滑工况下,应用半赫兹接触得到的横向蠕滑力与CONTACT计算结果有较大偏差,其余工况相差不超过18%;基于半赫兹接触的FASTSIM计算时间约为基于赫兹接触的6倍,是CONTACT计算时间的1/166;半赫兹接触时,考虑弹性滑动速度的车轮磨耗深度更接近于CONTACT计算结果.  相似文献   

2.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序. 以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异. 计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%; 各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%; 综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.   相似文献   

3.
为了分析地铁车辆常用的LM型踏面、内侧距1 358 mm和1 360 mm的S1002型车轮踏面分别与60 kg/m钢轨匹配特性.进行了轮轨接触几何、非赫兹滚动接触、车辆轨道耦合动力学计算.轮轨接触分析表明,LM轮轨接触点能够均匀分布于钢轨型面,轮对等效锥度随轮对横移呈增大关系,接触斑面积偏小、最大等效接触应力偏大、磨...  相似文献   

4.
车轮型面动态高速曲线通过性比较   总被引:2,自引:1,他引:2  
为了有效选择高速车轮型面,通过车辆轨道系统动力学仿真得到轮对高速通过曲线的运动状态,利用运动状态参量进行三维轮轨接触几何特性与蠕滑率计算,用Contact程序进行轮轨非赫兹滚动接触计算,分析了LMa、S1002和XP55车轮型面高速曲线通过匹配特点。分析结果表明:LMa和XP55型面轮对运动参数曲线平滑,S1002型面出现大幅度波动,并产生蛇行运动;当轮对横移量为3.0~3.5 mm时,S1002型面轮轨接触点对产生约11 mm跳跃,正好处于钢轨型面R300、R80 mm圆弧过渡区;S1002型面接触斑基本处于滑动状态,LMa型面接触应力最小,XP55型面接触应力最大。可见S1002型面与中国60 kg.m-1钢轨不匹配,LMa型面匹配效果最理想,XP55型面匹配相对较好。  相似文献   

5.
改进了车轮型面设计方法,给出了设计方法的解析数学表达式,将轮对等效锥度与轮轨型面接触状态联系起来,对设计实例进行了轮轨几何接触、非赫兹滚动接触和车辆动力学性能分析.研究结果表明:轮轨接触点能够均匀分散分布;由于接触斑面积增大约23%,最大接触压力降低约21%,使轮轨滚动接触应力降低了约20%;装备实例型面的车辆临界速度...  相似文献   

6.
轮轨接触是高速列车运营安全中的关键问题,研究轮轨三维非线性静态接触应力及其影响因素是解决这些问题的关键。利用有限元分析软件 ANSYS,建立三维轮轨有限元模型,轮轨之间建立面面接触单元,对 TB锥形踏面和CHN60钢轨静态接触进行计算,分析轮重和材料模型因素对接触斑形状和面积的影响,并与 Hertz理论解进行对比,进而分析平均接触应力、轮轨 Mises应力的影响,再利用弹簧单元模拟弹性地基,考虑地基刚度因素对轮轨静态法向接触应力的影响。结果表明:轮轨接触斑面积和形状是轮轨接触应力的主要影响因素;轮轨接触斑形状与 Hertz理论的椭圆接触斑存在差异,随着轮重增加,接触斑面积的差距逐渐越大,导致轮轨平均接触应力不同;弹性材料的接触斑面积小于弹塑性材料接触斑面积;轮轨接触不可避免的出现塑性变形;法向接触应力随着地基刚度减小而减小,但过小的地基刚度会增加地基变形,对列车长期运行不利。  相似文献   

7.
轮对摇头运动对轮轨滚动接触蠕滑率/力的影响   总被引:3,自引:0,他引:3  
用数值分析方法分析了单轮对的摇头运动对其左右轮轨滚动接触斑上蠕滑率/力的影响。在轮轨滚动接触蠕滑率/力关系分析方面,利用了Kalker的三维弹性体非赫兹滚动接触计算模型。通过分析计算可知,轮对摇头角运动参量是影响轮轮之间横向蠕滑力的主要因素。  相似文献   

8.
轮轨接触几何参数匹配对应力值影响的探讨   总被引:1,自引:3,他引:1  
轮轨接触几何参数的匹配优劣直接影响着轮轨接触应力值的大小。文中探讨了货车不同车轮踏面、不同轨底坡的轮轨匹配问题,分析了轮对模移对轮轨接触应力值的影响。提出了推广使用轮轨接触应力的数值计算方法。  相似文献   

9.
横风下车辆-轨道耦合动力学性能   总被引:2,自引:0,他引:2  
应用多体系统动力学理论,建立了车辆-轨道耦合动力学模型,利用新型显式积分法求解动力学方程组,利用赫兹非线性弹性接触理论计算轮轨法向力,利用沈氏理论计算轮轨蠕滑力,编写了车辆-轨道耦合动力学计算程序,研究了轨道结构对高速列车动力学性能的影响,分析了不同横风环境下高速列车动力学性能和列车姿态。研究结果表明:当列车运行速度为...  相似文献   

10.
渐开线直齿圆柱齿轮啮合过程接触应力有限元分析   总被引:1,自引:0,他引:1  
以某齿轮传动为例,将齿轮啮合原理和接触力学的概念相结合,用有限元法对渐开线直齿圆柱齿轮啮合过程接触应力进行较为全面的分析,并比较用赫兹公式计算的结果和有限元分析的结果,指出了齿轮国家标准接触应力计算说明的不准确性,为渐开齿轮传动的设计和研究提供指导.  相似文献   

11.
用有限元法建立了钢轨三维弹塑性滚动接触计算模型,分析钢轨材料屈服强度对钢轨残余应力和应变的影响.模型中考虑了钢轨的几何形状和边界条件,通过在钢轨表面反复施加移动赫兹法向压力和切向力模拟车轮的反复滚动作用.结果表明:最大等效塑性应变和剪应变均发生在钢轨接触表面,此处易萌生裂纹;钢轨接触表面附近材料塑性变形流线趋势与现场观测到的裂纹方向一致;钢轨材料屈服强度越高,材料的累积塑性变形越小,钢轨的最大残余应力越接近于表面.  相似文献   

12.
轮轨接触应力的有限元分析   总被引:4,自引:0,他引:4  
利用ANSYS有限元分析软件对轮轨接触进行了弹性静力分析,模拟了轮轨真实的几何形状和边界条件,分别研究了轴重、轮径、横移量对接触应力的影响,并对各种参数的变化规律进行了分析,得出了轮轨间接触应力的分布规律。  相似文献   

13.
为了建立轮轨磨损与损伤实验的统一标准,在目前实验方法研究轮轨磨损与损伤机制的基础上,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法. 针对轮轨磨损与损伤实验缺乏统一标准的现状,对不同实验方法获得的磨损与损伤结果进行对比分析;通过对不同实验结果的对比分析,提出了基于接触斑能量耗散轮轨磨损与损伤机制的分析方法,并分析了不同轮轨材料与实验方法的单位面积轮轨接触斑耗散能-磨损率曲线的变化规律. 研究结果表明:根据轮轨材料的单位面积轮轨接触斑耗散能-磨损率变化曲线规律及轮轨损伤特征,可将轮轨磨损划分为3个分区:轻微磨损、严重磨损、灾难性磨损,单位面积轮轨接触斑耗散能-磨损率曲线在实际应用中可预测轮轨磨损;轮轨接触斑耗散能准确地表征轮轨磨损率和损伤形式,可用于轮轨磨损与损伤数据的对比分析.   相似文献   

14.
机车车辆滚动振动试验台系统轮-轮接触关系的研究   总被引:1,自引:0,他引:1  
机车车辆滚动振动试验台是以有限半径的滚轮代替轨道。滚轮的引入将导致滚轮与轮对之间的接触关系有别于轨道与轮对之间的接触关系,这将影响到滚动振动试验台进行机车车辆动力学性能试验的结果。本文就滚动振动试验台轮-轮接触几何关系及其接触界面多数进行了推导计算,结合实例与线路运行的轮-轨接触状态进行了分析比较,并给出误差影响情况。   相似文献   

15.
基于Hertz接触理论的法向接触刚度计算方法   总被引:2,自引:2,他引:0       下载免费PDF全文
轮轨之间的弹性接触变形是车辆-轨道耦合动力学中计算轮轨力的核心,以基于Hertz接触理论的非线性接触刚度来描述轮轨之间的压缩量与轮轨法向力之间的关系. 目前的轮轨Hertz接触刚度计算公式为经验公式,来源于20世纪70年代英国铁路技术研究所的研究工作,分锥形踏面和磨耗型踏面两种类型,局限于特定的轮径范围和钢轨廓形. 基于三维弹性体Hertz接触理论,推导了满足Hertz接触条件的弹性体法向接触刚度通用计算公式,并结合轮轨几何外形特点,给出了轮轨接触斑大小及接触刚度参数的直接确定方法和数表,并以LM车轮踏面和CN60钢轨踏面匹配为例,对比分析了典型工况下计算结果与经验公式的差异. 分析结果表明:基于本文计算公式制定的Hertz弹性接触数表弥补了现有数表中缺乏接触刚度的不足,可直接用于弹性体接触计算;对于轮轨接触,与本文公式计算结果相比,以往经验公式中磨耗型踏面的接触常数计算结果仅在车轮名义中心圆弧与轨顶中心圆弧接触时的误差较小,约为0.40%~0.44%;其他接触位置时,经验公式计算结果与本文公式计算结果相差较大,误差范围可达 ?25.97%~131.42%.   相似文献   

16.
为了揭示轮轨波状表面与非稳态载荷的内在联系,利用有限元法,建立了二维弹塑性轮轨纯滚动接触计算模型,分析法向接触载荷波动值对钢轨残余应力、应变和变形的影响。模型中材料本构采用考虑棘轮效应的Jiang-Sehitoglu模型,非稳态仅考虑法向接触载荷的简谐变化,用弹塑性无限半空间表面上重复移动赫兹法向压力分布模拟反复纯滚动接触过程。发现非稳态法向接触载荷作用下产生同样波长的波状接触表面;随滚动次数的增加,残余应力增大,但很快趋于稳定,而残余应变也增大,但增大速率衰减;载荷波动值越大,波谷和波峰处的纵向残余应力越大,波谷处的轴向残余应力、残余剪应变和表面纵向位移越大,而波峰处的轴向残余应力、残余剪应变和表面纵向位移越小,波深越大。  相似文献   

17.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

18.
轮轨接触关系计算方法   总被引:2,自引:1,他引:2  
为了在车辆-轨道耦合动力学仿真中能更真实反映轮轨接触状态,利用迹线法原理和轨廓分区法,在考虑轮对的横移、浮沉、摇头、侧滚和左右钢轨的横移、浮沉、侧滚的条件下,分别计算轨顶和轨侧区域与车轮的最小轮轨间隙量,以此来判断轮轨的真实接触状态:正常的一点接触、非正常的一点接触、两点接触和车轮完全悬浮,并根据非线性赫兹接触理论分别求得两接触点处的轮轨法向力。轮轨接触关系仿真结果表明根据轮轨接触关系计算方法得出的轮轨接触关系符合车辆在实际线路上的运行状态。  相似文献   

19.
轮轨接触应力的计算是轮轨关系的一个重要课题。建立了一个任意形状钢轨和车轮在任意点接触时,接触面形状和接触面力的计算模型,然后把计算出的接触面力作为外载施加到三维弹塑性有限元模型中,进行轨头中部应力的计算,从而构成了一个完整的计算方法。最后的计算结果表明,该方法适用于具有复杂外形特征的轮轨接触应力的计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号