首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
将GM(1,1)模型与神经网络算法相结合建立灰色神经网络组合模型应用于深基坑工程变形预测。以润扬长江公路大桥深基坑工程的监测数据为例进行预测分析,结果表明:组合模型比GM(1,1)模型有更大的适应性,对于复杂非线性变化的数据预测精度高,可较好地预测深基坑变形。  相似文献   

2.
水上交通事故预测是水上安全的重要组成部分,目的是为了掌握水上交通事故未来的发展状况,为管理决策提供重要的理论依据。运用灰色神经网络组合模型对水上交通事故量进行预测,运用灰色模型对水上交通事故进行模拟,将结果和原始数据进行对比,计算出残差。运用BP神经网络模型对残差进行修正,得到最终预测的结果。仿真得到的2012年和2013年的水上交通事故预测量分别是270和281。实践表明,水上交通事故量呈下降趋势,但有部分年份仍有回升趋势。   相似文献   

3.
贾备  邬亮 《隧道建设》2009,29(3):280-283
为了使得基坑变形预测在“少样本”“贫信息”的情况下依然能够得出精度较高的结果,在传统的灰色GM(1,1)模型和BP神经网络模型的基础上,进行了灰色BP神经网络组合模型的研究。通过总结2传统模型的原理和算法,归纳各自的优缺点,分析2模型在本质原理上的关系,提出了构建组合模型的方法。利用广州市轨道交通三号线燕塘站的监测数据,对灰色GM(1,1)模型、BP神经网络模型和灰色BP神经网络组合模型分别进行了检验,肯定了组合模型的优越性。  相似文献   

4.
王晓静  胡郁葱  朱信山 《公路工程》2009,34(2):169-171,175
将灰色系统理论和马尔可夫链理论相结合,提出了灰色Verhulst-马尔可夫链组合预测方法来预测具有饱和状态发展趋势的观点;结合广东省公路客运量发展趋势来对该组合预测方法进行具体应用.计算分析证明,该模型较灰色Verhulst模型、灰色GM(1,1)-马尔可夫模型具有预测精度高、适应弹性大、实用性强等特点,可对公路客运量的发展趋势进行宏观把握,对宏观决策具有指导意义.  相似文献   

5.
杨志勇 《公路》2015,(3):104-108
介绍了将灰色系统理论和人工神经网络模型作为预测工具所具有的优缺点,建立了单一的GM(1,1)灰色系统模型。对传统的BP神经网络模型进行改进,在权值函数中加入一个动量因子作为阻尼系数,可大幅降低其容易陷入局部极小值的可能性。同时对学习率加以改进,使其能进行自我调节,于是构建了单一的BP神经网络模型。将单一的灰色模型和BP网络模型进行有机融合,得到了灰色系统—神经网络的组合模型。为验证这3种模型的预测效果,选取某一高速公路路段的单向交通量数据,通过Matlab软件编程进行拟合和预测,发现所建的组合模型综合预测效果最佳。  相似文献   

6.
区域物流成本的测量与分析是考察一个地区物流水平的关键问题,合理地计算和预测物流成本可以使各级政府对物流发展采取有效的宏观调控措施。本文提出了适合中国地区的物流成本的较合理的测算方法,以吉林省为例进行了实证分析,并采用改进的灰色BP神经网络模型对吉林省的物流成本进行预测,取得了满意的预测结果。研究表明控制物流成本仍然是振兴区域经济,提高经济效益的源泉。  相似文献   

7.
道路交通事故灰色马尔可夫预测模型   总被引:32,自引:1,他引:32  
李相勇  张南  蒋葛夫 《公路交通科技》2003,20(4):98-100,104
在道路交通事故灰色预测的基础上,引入马尔可夫链预测理论,建立道路交通事故灰色马尔可夫预测模型。道路交通事故灰色马尔可夫预测兼有灰色预测和马尔可夫链预测的优点,模型克服了随机波动性数据对道路交通事故预测精度的影响,拓宽了灰色预测的应用范围。实例计算证明:道路交通事故灰色马尔可夫预测模型预测精度高于GM(1,1)模型预测精度,模型可以用于道路交通事故预测。  相似文献   

8.
为了克服灰色预测方法的不足,在灰色模型预测方法的基础上,提出灰色马尔可夫链桥梁荷载随机过程交通量预测模型,该模型的灰色预测曲线能反映交通量历史发展趋势,马尔可夫预测可反映随机波动性对交通量预测的影响,从兼顾了趋势值和波动性两方面因素对预测结果的作用,能克服单一预测模型在交通量预测中的局限性,并可结合交通量实际情况,能实现准确、综合预测交通量的目的。在现有交通量统计资料的基础上,对该模型进行了精度检验,并预测出了2007年的交通量。实例计算分析表明,模型精度良好,预测结果与实际状态基本相符,利用灰色马尔可夫理论进行交通量预测是一种行之有效的方法。  相似文献   

9.
高速公路交通生成预测的改进灰色马尔可夫模型   总被引:10,自引:1,他引:10  
高速公路交通生成预测是进行高速公路网规划不可缺少的环节,传统的预测方法需要考虑人口、土地利用等因素,过程显得极为复杂。而灰色预测模型可以在基础资料缺乏的条件下可建立模型进行预测,但对于高速公路交通生成量这一类随机性、波动性较大的数据,使得拟合较差,预测精度降低。针对这些不足进行改进,提出改进的灰色马尔可夫预测方法。最后将该预测模型应用于高速公路网规划交通生成预测中,取得了良好的效果。  相似文献   

10.
公路货运量灰色模型-马尔可夫链预测方法研究   总被引:28,自引:0,他引:28  
将灰色系统理论与马尔可夫链相结合,首次提出了灰色模型-马尔可夫链预测公路货运量的方法;并结合“十五”期间中国公路货运量和公路货运市场的发展趋势的预测分析详细阐述了该方法的具体应用。首先建立GM(1,1)灰色动态拟合模型,并以此作为公路货运量发展变化的动态基准线模型;在此基础上应用马尔可夫链确定系统状态转移概率矩阵,通过系统状态的划分、样本值与模型拟合值之间的残差及其标准化离差等指标的分析计算,最终以概率形式分析和预测公路货运量的发展变化区问。理论分析和实践都表明,该法不但预测结果更可靠,而且能够对公路货运市场的发展趋势进行宏观的把握,有利于决策者的决策行为。  相似文献   

11.
研究GM(1,1)模型的理论发现,模型的背景值序列、边值条件和残差的改进能提高模型的模拟预测精度。利用MATLAB软件编制不同背景值和边界条件下的模型优选程序,通过工程实例表明,改进的GM(1,1)模型模拟预测精度较高,适合其在变形预测中应用。  相似文献   

12.
针对公路客运量预测的问题,基于常用预测方法的研究,提出BP神经网络组合预测模型.结合河南省客运量运输情况,对组合预测模型进行了验证.实验结果表明,该方法对公路客运量的预测很有效.  相似文献   

13.
交通事故的发生,受人、车、路、环境、管理等多方面因素的影响,存在很大的不确定性。利用BP神经网络,建立交通事故预测模型,并用Matlab仿真,验证模型的精确性。  相似文献   

14.
基于组合预测的RBF神经网络货运量预测方法研究   总被引:5,自引:0,他引:5  
胡波  刘建民 《交通与计算机》2006,24(4):34-36,40
为有效进行交通货运量预测,通过对货运量影响因素的分析,建立了关于货运量影响因素的层次分析模型,根据该模型构建了基于RBF神经网络的货运量预测方法。用我国1985-2004年的货运量统计数据对该神经网络进行训练和检验,并对2005-2006两年间的货运量进行预测。预测时设定了2005-2006年2a间货运量各影响因素值,再运用RBF神经网络预测这两年的货运量。结果表明,2005年的预测值与国家统计局最近公布的实际数值有很好的一致性,表明这一方法的可行性。  相似文献   

15.
BP神经网络和GM(1,1)灰色模型在公路客运量预测中的应用   总被引:3,自引:0,他引:3  
在灰色预测的基础上,引入BP神经网络模型,建立了GM(1,1)和BP神经网络组合模型。此组合模型兼有灰色预测和BP神经网络预测的优点,模型既克服了原始数据少,数据波动性大对预测精度的影响,也增强了预测的自适应性。实例证明了组合模型的预测精度高于单独的GM(1,1)模型,可以用于公路客运量预测。  相似文献   

16.
结合停车需求特点分析了停车需求影响因素,提出了基于主成分分析的BP神经网络停车需求预测模型,该模型主要是通过对城市中心区停车需求的经济、土地、交通的特征分析,利用主成分分析法,明确了影响停车需求的主成分,简化了神经网络的输入样本,消除了网络输入之间的相关性,提高了网络的性能,实现了公共停车需求的准确预测。  相似文献   

17.
林连  林桦 《交通与计算机》2009,27(5):161-165
针对传统BP神经网络模型收敛速度慢的缺陷,对其进行改进,以提高收敛速度。经运用厦门港物流出口量的历史数据进行检验分析,给出BP神经网络仿真计算方法,其仿真结果与实际结果比较,具有较高的可信度。证明了改进后的模型加快了收敛速度,提高预测结果的准确性。  相似文献   

18.
根据公交换乘枢纽换乘量的生成特点和影响交通换乘量的主要组成因素,研究发现交通换乘量具有“小样本、贫信息”的灰色特征,为此提出了一种基于灰色软计算的换乘需求量预测方法.该方法利用灰色系统原理建立灰色神经网络系统预测模型,通过采用遗传算法改进神经网络的性能,提高系统预测的精度.以兰州市市区公共交通枢纽规划为例,结合实际的道路交通调查数据,运用该方法对提出的交通枢纽方案进行了实证分析与评价.结果表明:改进的灰色神经网络能有效地改善预测精度;运用GA-GNN模型求解道路交通中的非线性问题对提高决策水平具有较大的现实意义.  相似文献   

19.
比较分析神经网络和粗糙集在数据处理过程中的各自优缺点,提出一种基于二者强耦合集成方式的短时交通流预测模型。首先利用粗集对获取的交通流数据进行预处理,简化神经网络训练样本数据集并通过粗集属性约简提取决策规则;其次,利用所提取的规则直接确定神经网络的隐层数、隐层节点数及节点的相互关系;最后训练神经网络用于短时交通流预测。通过与单纯利用神经网络预测的结果进行比较,发现该模型降低了网络训练时间,提高了预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号