共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
3.
为了使得基坑变形预测在“少样本”“贫信息”的情况下依然能够得出精度较高的结果,在传统的灰色GM(1,1)模型和BP神经网络模型的基础上,进行了灰色BP神经网络组合模型的研究。通过总结2传统模型的原理和算法,归纳各自的优缺点,分析2模型在本质原理上的关系,提出了构建组合模型的方法。利用广州市轨道交通三号线燕塘站的监测数据,对灰色GM(1,1)模型、BP神经网络模型和灰色BP神经网络组合模型分别进行了检验,肯定了组合模型的优越性。 相似文献
4.
5.
介绍了将灰色系统理论和人工神经网络模型作为预测工具所具有的优缺点,建立了单一的GM(1,1)灰色系统模型。对传统的BP神经网络模型进行改进,在权值函数中加入一个动量因子作为阻尼系数,可大幅降低其容易陷入局部极小值的可能性。同时对学习率加以改进,使其能进行自我调节,于是构建了单一的BP神经网络模型。将单一的灰色模型和BP网络模型进行有机融合,得到了灰色系统—神经网络的组合模型。为验证这3种模型的预测效果,选取某一高速公路路段的单向交通量数据,通过Matlab软件编程进行拟合和预测,发现所建的组合模型综合预测效果最佳。 相似文献
6.
7.
8.
为了克服灰色预测方法的不足,在灰色模型预测方法的基础上,提出灰色马尔可夫链桥梁荷载随机过程交通量预测模型,该模型的灰色预测曲线能反映交通量历史发展趋势,马尔可夫预测可反映随机波动性对交通量预测的影响,从兼顾了趋势值和波动性两方面因素对预测结果的作用,能克服单一预测模型在交通量预测中的局限性,并可结合交通量实际情况,能实现准确、综合预测交通量的目的。在现有交通量统计资料的基础上,对该模型进行了精度检验,并预测出了2007年的交通量。实例计算分析表明,模型精度良好,预测结果与实际状态基本相符,利用灰色马尔可夫理论进行交通量预测是一种行之有效的方法。 相似文献
9.
10.
公路货运量灰色模型-马尔可夫链预测方法研究 总被引:28,自引:0,他引:28
将灰色系统理论与马尔可夫链相结合,首次提出了灰色模型-马尔可夫链预测公路货运量的方法;并结合“十五”期间中国公路货运量和公路货运市场的发展趋势的预测分析详细阐述了该方法的具体应用。首先建立GM(1,1)灰色动态拟合模型,并以此作为公路货运量发展变化的动态基准线模型;在此基础上应用马尔可夫链确定系统状态转移概率矩阵,通过系统状态的划分、样本值与模型拟合值之间的残差及其标准化离差等指标的分析计算,最终以概率形式分析和预测公路货运量的发展变化区问。理论分析和实践都表明,该法不但预测结果更可靠,而且能够对公路货运市场的发展趋势进行宏观的把握,有利于决策者的决策行为。 相似文献
11.
12.
13.
交通事故的发生,受人、车、路、环境、管理等多方面因素的影响,存在很大的不确定性。利用BP神经网络,建立交通事故预测模型,并用Matlab仿真,验证模型的精确性。 相似文献
14.
基于组合预测的RBF神经网络货运量预测方法研究 总被引:5,自引:0,他引:5
为有效进行交通货运量预测,通过对货运量影响因素的分析,建立了关于货运量影响因素的层次分析模型,根据该模型构建了基于RBF神经网络的货运量预测方法。用我国1985-2004年的货运量统计数据对该神经网络进行训练和检验,并对2005-2006两年间的货运量进行预测。预测时设定了2005-2006年2a间货运量各影响因素值,再运用RBF神经网络预测这两年的货运量。结果表明,2005年的预测值与国家统计局最近公布的实际数值有很好的一致性,表明这一方法的可行性。 相似文献
15.
16.
17.
针对传统BP神经网络模型收敛速度慢的缺陷,对其进行改进,以提高收敛速度。经运用厦门港物流出口量的历史数据进行检验分析,给出BP神经网络仿真计算方法,其仿真结果与实际结果比较,具有较高的可信度。证明了改进后的模型加快了收敛速度,提高预测结果的准确性。 相似文献
18.
根据公交换乘枢纽换乘量的生成特点和影响交通换乘量的主要组成因素,研究发现交通换乘量具有“小样本、贫信息”的灰色特征,为此提出了一种基于灰色软计算的换乘需求量预测方法.该方法利用灰色系统原理建立灰色神经网络系统预测模型,通过采用遗传算法改进神经网络的性能,提高系统预测的精度.以兰州市市区公共交通枢纽规划为例,结合实际的道路交通调查数据,运用该方法对提出的交通枢纽方案进行了实证分析与评价.结果表明:改进的灰色神经网络能有效地改善预测精度;运用GA-GNN模型求解道路交通中的非线性问题对提高决策水平具有较大的现实意义. 相似文献