首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

2.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

3.
Methane (CH4) concentrations were measured in the water column, in sediment porewaters, and in atmospheric air, in the Ría de Vigo, NW Spain, during both the onset (April 2003) and at the end of (September 2004) seasonal upwelling. In addition, CH4 concentration and stable isotopic signatures (δ13CH4) were measured in porewaters, and sediment methanogenesis and aerobic oxidation of CH4 were determined in sediment incubations. Surface water column CH4 (2 m depth) was in the range 3–180 nmol l− 1 (110–8500% saturation) and followed a generally landward increase but with localised maxima in both the inner and middle Ría. These maxima were consistent with CH4 inputs from underlying porewaters in which CH4 concentrations were up to 3 orders of magnitude higher (maximum 350 μmol l− 1). Surface water CH4 concentrations were approximately three times higher in September than in April, consistent with a significant benthic CH4 flux driven by enhanced sediment methanogenesis following the summer productivity maximum. CH4 and δ13CH4 in sediment porewaters and in incubated sediment slurries (20 °C) revealed significant sediment CH4 oxidation, with an apparent isotopic fractionation factor (rc) of  1.004. Using turbulent diffusion models of air–sea exchange we estimate an annual emission of atmospheric CH4 from the Ría de Vigo of 18–44 × 106 g (1.1–2.7 × 106 mol). This estimate is approximately 1–2 orders of magnitude lower than a previous estimate based on a bubble transport model.  相似文献   

4.
Information of suspended sediments fluxes of small rivers to the coastal zone is sparse, and this is particularly so for the Iberian Rivers. To help address this shortage of information, the relationship between fluvial discharge and total suspended solids (TSS) for the main 28 Cantabrian Rivers using data from 22 years monitoring by the COCA network has been analysed, and their particulate material fluxes to the Bay of Biscay coasts have been quantified. The Cantabrian Fluvial System (drainage basin area of 20,333 km2) may be considered as a quasi-homogeneous fluvial system with an average discharge of 561 m− 3 s− 1 and average loads of 35 kgTSS s− 1 with rivers showing similar average yields of 56 t km− 2 a− 1. The average TSS contribution is 1.2 ± 0.2 109 kg a− 1. This seaward flux of sediment is dispersed along the entire North Iberian coast and is rather modest (25% of the total supply) in comparison with the output from the French Rivers to the Bay of Biscay. The TSS loads of Cantabrian Rivers indicate they are similar to world upland rivers and those of other parts of Northern Europe according to Milliman and Syvistki [Milliman and Syvistki, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100: 525–544] and Milliman [Milliman, 2001. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers. Scientia Marina, 65: 121–132]. Although their TSS flux is practically negligible (13,000 times lower) when compared to the world average flux, they provide a good example of the role of small Atlantic temperate rivers.  相似文献   

5.
Distributions of the radionuclides 210Pb and 239,240Pu in sediment cores from the Northeast Water Polynya, Greenland, showed that these nuclides reached depths of 5–15 cm by particle mixing and sediment accumulation. End-member average values of the particle mixing coefficient and sediment accumulation rate were 0.13 cm2 y−1 and 0.06 cm y−1, obtained from the 210Pb profiles by assuming that each process is dominant relative to the other. Both 210Pb and 239,240Pu were measured on four cores; using the Pu data to constrain mixing rates produced corrected sediment accumulation rates that were 20–80% of the values calculated by neglecting mixing. Organic carbon burial in the polynya sediments was ≤0.4 mmol m−2 d−1, based on measured POC values at depth in the sediments and sediment accumulation rates corrected for mixing. This value is about 1% of the independently measured POC flux leaving the euphotic zone and compares with benthic carbon remineralization rates of 7% calculated by others from O2 uptake in the sediments.The inventories of excess 210Pb in the sediments ranged from 6 to 28 dpm cm−2. Relative to the atmospheric input of 210Pb and in situ production from decay of 226Ra, approximately 5 dpm cm−2 of 210Pb was being removed from the water column. The difference between the removal from the water column and sediment inventories suggests a net import of 210Pb to the polynya. This may occur by input of dissolved 210Pb from offshore waters or by input of 210Pb carried by sea ice. Particulate matter in land-derived fast ice adjacent to the polynya contained 330 ± 14 dpm of excess 210Pb g−1. If particles transported in sea ice are comparable to those extracted from fast ice, then sea ice transport into the polynya followed by melting may be an important source of excess 210Pb to the area. Fast ice also may contribute 210Pb if portions break off and melt within the polynya, as occurred in 1993.  相似文献   

6.
In late summer 2002 and 2003, exceptionally warm inflow events of saline water were observed in the Baltic. These warm saline waters were embedded in the halocline of the Bornholm Basin and caused a strong anomaly of the seasonal temperature cycle. The temperature in October 2002 was the highest ever observed in the halocline of the Bornholm Basin.Although the oxygen content of the inflowing water was only about 1.5 ml l− 1 at the Darss Sill, it caused a moderate ventilation of the halocline in the Bornholm Basin. On the way through the Arkona Basin, the entrainment of ambient water increased the oxygen content of the inflowing saline water masses.Warm summer inflows were rare events in the last 50 years, but their frequency has increased since 1990. This is likely caused by climate change. The analysis of a 50-year time series of hydrographic parameters reveals significant changes of the thermal regime around the year 1988. The winter surface and intermediate water temperatures of the Bornholm Basin increased by about 1 °C. Also, the duration of warm water in the surface layer was prolonged after 1988. A high correlation between the minimum intermediate winter water temperatures and the NAO winter index was found.Since temperature is a key parameter for many biological processes various responses of the ecosystem to the change in hydrographic conditions could be expected. Possible biological implications of the warm inflow events for the ecosystem are discussed.  相似文献   

7.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   

8.
The diffusive and in situ fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA) have been measured and an estimation has been made of the water–atmosphere fluxes of CO2 in three estuarine systems of the Cantabrian Sea during the spring of 1998. Each of these systems undergoes a different anthropogenic influence. The diffusive fluxes of dissolved inorganic carbon and total alkalinity obtained present values ranging between 0.54–2.65 and 0.0–2.4 mmol m−2 day−1, respectively. These ranges are in agreement with those of other coastal systems. The in situ fluxes are high and extremely variable (35–284 mmol TA m−2 day−1, 43–554 mmol DIC m−2 day−1 and 22–261 mmol dissolved oxygen (DO) m−2 day−1), because the systems studied are very heterogeneous. The values of the ratio of the in situ fluxes of TA and DIC show on average that the rate of dissolution of CaCO3 is 0.37 times that of organic carbon oxidation. Equally, the interval of variation of the relationship between the benthic fluxes of inorganic carbon and oxygen (FDIC/FDO) is very wide (0.3–13.9), which demonstrates the different contributions made by the processes of aerobic and anaerobic degradation of the organic matter, as well as by the dissolution–precipitation of CaCO3. The water–atmosphere fluxes of CO2 present a clear dependence on the salinity. The brackish water of these systems (salinity<20), where maximum fluxes of 989 mmol m−2 day−1 have been estimated, act as a source of CO2 to the atmosphere. The more saline zones of the estuary (salinity>30) act as a sink of CO2, with fluxes between −5 and −10 mmol m−2 day−1.  相似文献   

9.
We develop a layered “box model” to evaluate the major effects of estuarine eutrophication of the Szczecin lagoon which can be compared with integrating measures (chlorophyll a (Chl a), sediment burial, sediment oxygen consumption (SOC), input and output of total nutrient loads) and use it to hindcast the period 1950–1996 (the years when major increase in nutrient discharges by the Oder River took place). The following state variables are used to describe the cycling of the limiting nutrients (nitrogen and phosphorus): phytoplankton (Phy), labile and refractory detritus (DN, DNref, DP, DPref), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and oxygen (O2). The three layers of the model include two water layers and one sediment layer. Decrease of the carrying capacity with respect to the increased supply of organic matter of the system with advancing eutrophication over the period studied is parameterized by an exponential decrease of the sediment nitrogen fluxes with increasing burial, simulating changing properties from moderate to high accumulating sediments. The seasonal variation as well as the order of magnitude of nutrient concentrations and phytoplankton stocks in the water column remains in agreement with recent observations. Calculated annual mean values of nutrient burial of 193 mmol N m−2 a−1 and 23 mmol P m−2 a−1 are supported by observed values from geological sediment records. Estimated DIN remineralization in the sediments between 100 and 550 mmol N m−2 a−1 corresponds to SOC measurements. Simulated DIP release up to 60 mmol P m−2 a−1 corresponds to recent measurements. The conceptual framework presented here can be used for a sequential box model approach connecting small estuaries like the Szczecin lagoon and the open sea, and might also be connected with river box models.  相似文献   

10.
Multidisciplinary, marine ecological observations were conducted at the shallow water edge of the Northeast Water in June, 1993. Although variable in size and shape, a small polynya was constantly present at Eskimonaes, at the fast-ice edge of Ingolfsfjord. A shallow stratified layer developed at the water sufface at negative water and air temperatures—an effect of sea ice melting in cold water early in the season. Nutrients were recorded in considerable quantities, although by mid July NO3 had become depleted. The chlorophyll and phytoplankton maxima at 8–12 m depth had peak values of 2 mg chl a m−3, typical for Arctic algal blooms. The phytoplankton included over 90 species and was dominated by the Fragillariopsis group. Zooplankton was poor in biomass and density, but over 23 taxa were found, with the copepods Oithona similis and Pseudocalanus acuspes being numerically dominant. Sedimentation was approximately 0.2 g dry weight m−2 d−1 and suspended matter concentrations ranged from 4 to 19 mg l−1. The benthos was represented by hard bottom forms only, with a surprisingly dense cover of macrophytes. Juvenile sea urchins (Strongylocentrotus droebachiensis), brittle stars (Ophiocten sericeum) and amphipods were dominant. Higher trophic levels were represented by benthic feeders, such as eiders and walruses. The area observed was more similar to high Arctic fjord ecosystems than to the offshore central Northeast Water polynya.  相似文献   

11.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

12.
Sedimentological and oceanographic inferences have been obtained for the NW Ross Sea using sedimentary 210Pb as a tracer together with determinations of biogenic silica and organic carbon. 210Pb chronologies give apparent accumulation rates ranging between 14 and 80 mg cm−2 yr−1 (0.02–0.12 cm yr−1) in the shelf basins. Even if a profile of 210Pb is present in sediments from the top of the banks, here sediment accumulation rate is practically null, and physical mixing is responsible for the downward transport of fine particles and associated 210Pb. The accuracy of 210Pb-derived accumulation rates is discussed with respect to 14C dates. The annual rate of biogenic accumulation from 210Pb appears to be ca. 8 times higher than the value derived using radiocarbon. Bioturbation is probably responsible for the discrepancy but also temporal and spatial variations in opal accumulation play a key-role. Contrasting measured and expected inventories of 210Pb, a residence time of about 50 years has been tentatively estimated for the water in the NW Ross Sea. Furthermore, the data suggest that the pattern of present-day biosiliceous sediment accumulation in the Ross Sea is mainly driven by biogenic silica production in the water column, the SW area being the most productive part of the Ross Sea, by high sediment accumulation rate which enhances the seabed preservation, and by hydrodynamics, which is so effective to resuspend fine biogenic particles from the topographic highs. Resuspended particles are then deposited onto the flanks. The material which accumulates in the central part of the basins derives basically from primary production and settling through the water column.  相似文献   

13.
Phytoplankton, bacteria and microzooplankton were investigated on a transect in the Bellingshausen Sea during the ice melt period in November–December 1992. The transect along the 85°W meridian comprised seven stations that progressed from solid pack-ice (70°S), through melting ice into open water (67°S). The abundance, biomass and taxonomic composition were determined for each component of the microbial community. The phytoplankton was mostly dominated by diatoms, particularly small (<20 μm) species. Diatom abundance ranged from 66 000 cells l−1 under the ice to 410 000 cells l−1 in open water. Phytoplankton biomass varied from <1 to 167 mg C m−3, with diatoms comprising 89–95% of the total biomass in open water and autotrophic nanoflagellates comprising 57% under the ice. The standing stocks of autotrophs in the mixed layer ranged from 95 mg C m−2 under the pack-ice to 9478 mg C m−2 in open waters. Bacterial abundance in ice-covered and open water stations varied from 1.1 to 5.5×108 cells l−1. Bacterial biomass ranged from 2.4 mg C m−3 under pack-ice to an average of 14 mg C m−3 in open water. The microzooplankton consisted mainly of aloricate oligotrich ciliates and heterotrophic dinoflagellates and these were most abundant in open waters. Their biomass varied between 0.2 and 54 mg C m−3 with a minimum at depth under the ice and maximum in open surface waters. Microheterotrophic standing stocks varied between 396 mg C m−2 under pack-ice and 3677 mg C m−2 in the open waters. The standing stocks of the total microbial community increased consistently from 491 mg C m−2 at the ice station to 13 155 mg C m−2 in open waters, reflecting the productive response of the community to ice-melt. The composition of the microbial community also shifted markedly from one dominated by heterotrophs (82% of microbial stocks) at the ice station to one dominated by autotrophs (73% of microbial stocks) in the open water. Our estimates suggest that the microbial community comprised >100% of the total particulate organic carbon (POC) under the ice and 62–66% of the measured POC in the open waters.  相似文献   

14.
Two state-of-the-art techniques were used to assess the impact of organic loading from fish farming in two fjords of Southern Chile, Pillan and Reñihue Fjords. A sediment profile imaging (SPI) camera was deployed and sediment microprofiles (oxygen, H2S, redox and pH) were measured in undisturbed sediment cores collected using a HAPS corer. Four out of seven stations in Pillan Fjord were found to be severely disturbed: SPI images showed azoic conditions (no apparent Redox Potential Discontinuity layer, no evidence of aerobic life form, presence of an uneaten fish food layer, negative OSI scores). These findings were corroborated by very high oxygen consumption rates (700–1200 mmol m− 2 day− 1), H2S concentrations increasing quickly within the sediment column and redox potential decreasing towards negative values within a few mm down core. Results for Reñihue Fjord were not so straightforward. SPI images indicated that most of the stations (R3 to R7) presented well-mixed conditions (high apparent RPD layers, presence of infauna, burrows, etc.), but oxygen profiles yielded consumption rates of 230 to 490 mmol m− 2 day− 1 and organic carbon mineralization of 2.16 to 4.53 g C m− 2 day− 1. These latter values were close to the limit of aerobic degradation of organic matter although no visible changes were recorded within the sediment column. In view of our findings, the importance of integrating multidisciplinary methodologies in impact assessment studies was discussed.  相似文献   

15.
Turbulent overturning on scales greater than 10 m is observed near the bottom and in mid-depth layers within the Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) in southern Taiwan. Bursts of strong turbulence coexist with bursts of strong sediment concentrations in mid-depth layers. The turbulence kinetic energy dissipation rate in some turbulence bursts exceeds 10− 4 W kg− 1, and the eddy diffusivity exceeds 10− 1 m2 s− 1. Within the canyon, the depth averaged turbulence kinetic energy dissipation rate is ~ 7 × 10− 6 W kg− 1, and the depth averaged eddy diffusivity is ~ 10− 2 m2 s− 1. These are more than two orders of magnitude greater than typical values in the open ocean, and are much larger than those found in the Monterey Canyon where the strong turbulent mixing has also been. The interaction of tidal currents with the complex topography in Gaoping Submarine Canyon is presumably responsible for the observed turbulent overturning via shear instability and the breaking of internal tides and internal waves at critical frequencies. Strong 1st-mode internal tides exist in KPSC. The depth averaged internal tidal energy near the canyon mouth is ~ 0.17 m2 s− 2. The depth integrated internal tidal energy flux at the mouth of the canyon is ~ 14 kW m− 1, propagating along the axis of the canyon toward the canyon head. The internal tidal energy flux in the canyon is 3–7 times greater than that found in Monterey Canyon, presumably due to the more than 10 times larger barotropic tide in the canyon. Simple energy budget calculations conclude that internal tides alone may provide energy sufficient to explain the turbulent mixing estimated within the canyon. Further experiments are needed in order to quantify the seasonal and geographical distributions of internal tides in Gaoping Submarine Canyon and their effects on the sediment flux in the canyon.  相似文献   

16.
The potential for carbon export and the role of siliceous plankton in the cycling of C and N was assessed in natural plankton assemblages in the Santa Barbara Basin, California, by examining uptake rates of inorganic carbon, nitrate and silicic acid. In April–August 1997, the concentrations of chlorophyll a, particulate organic carbon, particulate organic nitrogen and biogenic silica were measured twice monthly, and results revealed the occurrence of at least three blooms, the largest in June. Particulate elemental ratios of C, N and Si were similar to ratios of nutrient-replete diatoms, suggesting that they dominated this bloom. Mean integrated rates of carbon, nitrate and silicon uptake during the 4-month study period are similar to other productive coastal and upwelling regions (103, 8.3 and 13 mmol m−2 day−1, respectively). New production rates were twice as high as previously reported in this region and indicate that high rates of new production along eastern boundary currents are not confined to the major coastal upwelling regions. C/NO3, Si/NO3 and Si/C uptake ratios varied widely, and mean integrated ratios were 14±5.4, 1.6±1.0 and 0.12±0.07 (S.D.), respectively. That mean C/NO3 uptake ratio corresponds to an f-ratio of about 0.5 indicating a large potential for particulate export. Based on the average Si/NO3 and Si/C uptake ratios, diatoms could perform all of the primary production and nitrate uptake that occurred during the study; these rates also suggest that export is controlled by diatoms in this system. The mean Si/C biomass ratio was lower than the mean Si/C uptake ratio, consistent with the preferential export of Si relative to C observed in sediment traps in the basin. The study took place during a period of surface-water warming, with nitrate and silicic acid concentrations decreasing throughout the onset of the 1997–1998 El Niño conditions. Although diatoms contributed less to particulate biomass during the low nutrient conditions, high f-ratios (0.33–0.66) were maintained.  相似文献   

17.
Sediment community metabolism (oxygen demand) was measured in the Northeast Water (NEW) polynya off Greenland employing two methods: in situ benthic chambers deployed with a benthic (GOMEX) lander and shipboard laboratory Batch Micro-Incubation Chambers (BMICs) utilizing ‘cores’ recovered from USNEL box cores. The mean benthic respiration rate measured with the lander was 0.057 mM O2 m−2 h−1 (n = 5); whereas the mean measured with the BMICs was 0.11 mM O2 m−2 h−1 (n = 21; p < 0.01 that the means were the same). In terms of carbon fluxes (14 and 27 mg C m−2 d−1), these respiration rates represent ca. 5–15% of the average net primary production measured in the euphotic zone in 1992. The biomass of the bacteria, meiofauna and macrofauna were measured at each location to quantify the relationship between total community respiration and total community biomass (mean 1.42 g C m−2). Average carbon residence time in the biota, calculated by dividing the biomass by the respiration, was on the order of 50–100 days, which is comparable to relatively oligotrophic continental margins at temperate latitudes.The biomass and respiration data for the aerobic heterotrophic bacteria, the infaunal invertebrates (meiofauna and macrofauna), and the epifaunal megabenthos (two species of brittle stars) are summarized in a ‘steady-state’ solution of a sediment food chain model, in terms of carbon. This carbon budget illustrates the relative importance of the sediment-dwelling invertebrates in the benthic subsystem, compared to the bacteria and the epibenthos, during the summer open-water period in mud-lined troughs at depths of about 300 m. The input needed to drive heterotrophic respiratory processes was within the range of the input of organic matter recorded in moored, time-sequencing sediment traps.A time-dependent numerical simulation of the model was run to investigate the potential responses of the three size groups of benthos to abrupt seasonal pulses of particulate organic matter. The model suggests that there is a time lag in the increase in bottom community biomass and respiration following the POC pulse, and provides hypothetical estimates for the potential carbon storage in the summer (open water), followed by catabolic losses during each ensuing winter (ice covered).This sequence of storage and respiration may contribute to the process of seasonal CO2 ‘rectification’ (sensu Yager et al., 1995) in some Arctic ecosystems.  相似文献   

18.
During a hydrographic survey in January 2006 the spreading of inflowing saline water was observed in the Arkona Basin (Western Baltic Sea). Two bottom mounted ‘pulse coherent’ acoustic Doppler profilers (PC-ADP) were used to measure the near-bottom current field of the dense plume with a high temporal (1 s) and spatial resolution (5 cm). In order to estimate the dissipation rate of turbulent kinetic energy () a structure function approach was applied to the beam velocity data. Simultaneous measurements with a microstructure shear profiler (MSS) and an acoustic Doppler velocimeter (ADV) supplied independent data for the verification of the structure function method. Additional measurements with standard CTD, near-bottom towed and vessel mounted acoustic Doppler current profilers (ADCP) completed the data set.The estimated dissipation rates from the structure function approach fit well with the values derived from the ADV and the MSS probe. It is shown that the structure function approach is a reliable and easily applicable method to derive estimates of TKE dissipation rates from PC-ADP beam velocities. The observed dissipation rates ranged between 5 · 10− 6 and 1 · 10− 8 W kg− 1 depending on the hydrographic conditions. Inside the plume the dissipation rates exceeded that of the overlaying brackish water by two orders of magnitude. Since the noise level of velocity data in pulse coherent mode is considerably lower than in the Doppler mode the PC-ADP can also be used for estimates in marine environments with low turbulence level. Reynolds stresses estimated from the PC-ADP and the ADV agreed well at the same depth level. TKE production derived from PC-ADP measurements compared reasonably well with the dissipation rate of TKE in a varying environment.  相似文献   

19.
Levels of the heavy metals Copper (Cu), Zinc (Zn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni), Iron (Fe) and Manganese (Mn) were determined in coastal water, sediments and soft tissues of the gastropod limpet, Patella caerulea, and the bivalve, Barbatus barbatus, from seven different stations in the western coast of the Gulf of Suez. The concentrations of heavy metals in water ranged between 3.37–4.78, 18.83–21.46, 2.75–3.17, 0.22–0.27, 0.99–1.21, 2.69–3.65, 3.75–4.56 μg L− 1 and 23.82–32.78 mg g− 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The corresponding concentration values in the sediments were 8.65–12.16, 51.78–58.06, 36.52–42.15, 3.23–3.98, 9.03–12.75, 34.31–49.63, 3.28–4.56 and 64.20–70.22 μg g− 1 for Cu, Zn, Pb, Cd, Cr, Ni, Mn and Fe, respectively. The highest accumulated metals were Fe, Zn and Mn in both P. caerulea and B. barbatus, while the lowest one was Cd. The accumulation of metals was more pronounced in P. caerulea than B. barbatus. The highest concentrations of all metals in water, sediments and mollusca were recorded at Adabiya harbour north of the Gulf, while the lowest concentrations were recorded at Gabal El-Zeit and Hurghada. Land based activities and ships awaiting berth are the main source of metal pollution in the northern part of the Gulf.  相似文献   

20.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号