首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This paper develops a model for calculating comparable combined internal and external costs of intermodal and road freight transport networks. Internal costs consist of the operational-private costs borne by the transport and intermodal terminal operators, and the time costs of goods tied in transit. The external costs include the costs of the impacts of both networks on society and the environment such as local and global air pollution, congestion, noise pollution, and traffic accidents. The model is applied to the simplified configurations of both networks using the inputs from the European freight transport system. The objective is to investigate some effects of European Union policy, which aims to internalise the external costs of transport, on the prospective competition between two networks from a social perspective.  相似文献   

2.
3.
Intermodal rail/road freight transport has always been considered as a competitive alternative to its road freight counterpart in the European medium- to long-distance corridors (markets). Such consideration has been based on the increasing competitiveness of some innovative rail services and the existing and prospective performance of both modes in terms of the full social – internal or operational and external – costs. The most recent innovation of rail technologies and related services launched by some European railway companies, still at the conceptual level, is the Long Intermodal Freight Train (LIFT). This is supposed to be a block train operating in long-distance corridors (markets) with a substantial and regular freight demand.This paper develops analytical models for assessing the performance of the LIFTs, the already-operating Conventional Intermodal Freight Trains (CIFTs), and their road counterpart as well. The performance consists of the full – internal (private) and external – costs of the door-to-door delivery of loading units – containers, swap-bodies, and semi-trailers. The internal costs embrace the operational costs of the transport (rail and road) and intermodal terminal operators. The external costs include the costs of the impacts of door-to-door delivery of loading units on society and the environment. These negative externalities include noise, air pollution, traffic accidents, and congestion.The models are applied to a simplified version of intermodal and road transport system using inputs from the European freight transport sector. The aims are to compare the full costs of particular modalities in order to investigate the potential of the LIFTs as compared with the CIFTs in improving the internal efficiency of the rail freight sector and its competitiveness with respect to its road counterpart. In addition, the paper attempts to assess some effects on the potential modal shift of EU (European Union) transport policies on internalizing transport externalities.  相似文献   

4.
Abstract

The negative impacts of transport are in general associated with costs. These costs are usually denoted as ‘external costs’ or ‘externalities’. This paper presents a tool for calculating external costs for freight transport together with its application to a number of case studies. The categories considered include: air pollution, greenhouse gases, noise, accidents and congestion. Results are presented for a number of different transport alternatives as total costs and divided into categories. The uncertainties in the results are discussed. The assessment of these costs is essential for predicting future transport costs.  相似文献   

5.
Car exhaust emissions cause serious air pollution problems in many regions and, at a global level, contribute to climate change. Car use is also an important factor in other problems including traffic congestion, road accidents, noise pollution, community severance, and loss of countryside from road building. Forecasts of further increases in car ownership and use have prompted calls for policy-makers to encourage car users to switch to other forms of transport, particularly the bus. The effects of substituting bus for car travel in urban areas are simulated by specifying a spreadsheet model incorporating two types of car (petrol and diesel engine) and three types of bus (mini-, midi- and large bus). Six types of exhaust emission are considered for each vehicle type for the years 1992, 1995 and 1999: carbon monoxide, volatile organic compounds, nitrogen oxides, sulphur dioxide, (small) particulate matter and carbon dioxide. The paper provides a synthesis of monetary estimates of these exhaust emission and other costs. The other costs considered are traffic congestion, fuel consumption, noise pollution, road accidents and road damage. The exhaust emission monetary cost estimates, mainly from the United States and the United Kingdom, are discussed within the context of a sensitivity analysis which allows for changes in parameters such as load factors, emission factors and the individual exhaust emission cost estimates. The simulation results show that substitution of bus for car travel generally decreases the overall costs, particularly the costs of congestion, but increases exhaust emission costs if bus load factors are insufficiently high. In order to reduce exhaust emission costs from car to bus transfer at given load factors, the most effective policy option is to encourage the reduction of particulate emissions from bus engines. In terms of the overall costs, increasing bus load factors by relatively modest amounts can lead to substantial reductions in these overall costs. These results should be regarded as illustrative rather than definitive, given the uncertainties in a number of parameter estimates and the need for further research in areas not covered by the paper.  相似文献   

6.
Electric vehicles (EV) are often considered a promising technology to decrease external costs of road transport. Therefore, main external cost components are estimated for EV and internal combustion engine vehicles (ICEV). These include costs of accidents, air pollution, climate change, noise, and congestion. All components are estimated over the product lifetime and, where appropriate, differentiated according to fuel type, vehicle size as well as emission location and time. The advantage of this differentiation is, however, compensated by high uncertainties of most cost estimates. Overall, the external costs of EV and ICEV do not differ significantly. Only for climate change, local air pollutants in congested inner-cities, and noise some advantageous effects can be observed for EV. The advantages depend strongly on the national electricity power plant portfolio and potentially also on the charging strategy. Controlled charging might allow for higher emission reductions than uncontrolled charging of EV.  相似文献   

7.
A necessary input for the analysis of efficient transport policies is the marginal external cost of each transport mode. This paper studies the marginal external costs of urban transportation. These include the marginal external cost of congestion, accidents, air pollution and noise. The costs are computed for cars, buses, trams, metro and trucks. The methodology is described and applied to the urban area of Brussels for the year 2005.  相似文献   

8.
Abstract

In a recent international comparison of the social costs of road accidents, Trawén et al. (2003) noted that cost data are not available for Belgium and, by consequence, play no part in Belgian policy‐making. The purpose of the present paper is, therefore, to value the costs per casualty type and per accident in Belgium. Empirical data are provided on human and economic production losses as well as on direct accident costs such as medical costs, hospital visiting costs, accelerated funeral costs, property damage, administrative costs of insurance companies, litigation costs, police and fire department costs, and congestion costs. In Belgium the marginal unit value of preventing a road casualty is estimated at €2 004 799 per fatal casualty, €725 512 per seriously injured and €20 943 per slightly injured victim. The unit cost per accident amounts to €2 355 763, €850 033, €34 944 and €2571 for fatal, serious, slight injury and property damage only accidents, respectively. These results are consistent with valuations reported in other high‐income countries. Finally, the total costs of road accidents in 2002 are valued at €7.2 billion (2004 prices), or 2.6% of gross domestic product.  相似文献   

9.
In this article we estimate external costs for four representative types of freight trains. For each type of freight train, we estimate three general types of external costs and compare them with the private costs experienced by railroad companies. The general types of external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); and noise. Resulting private and external costs are compared with those of freight trucking, estimated in an earlier article. Rail external costs are 0.24 cent to 0.25 cent (US) per ton-mile, well less than the 1.11 cent for freight trucking, but external costs for rail generally constitute a larger amount relative to private costs, 9.3–22.6%, than is the case for trucking, 13.2%.  相似文献   

10.
M. Kia  E. Shayan  F. Ghotb 《运输评论》2013,33(1):105-122

The transport sector in general, and trucks in particular, generates a significant amount of emissions in Australia. It appears the trend will escalate unless different measures are taken to reduce the reliance of freight transport on trucks. This paper discusses the benefits of distribution centres as a means to reduce road congestion, increase safety, protect the environment by reducing atmospheric pollution and improve freight distribution. It also provides the effective use of the existing rail network and its infrastructure and improves the lead-time as well as lowering the cost of transportation of cargo. It also investigates the positive impact of distribution centres located near to manufacturing and farming production units. A simulation model has been developed and used to help determine the amount of atmospheric pollution produced by two modes of land transport, rail and road, for the movement of containers between port and destination. Results derived from the model provide evidence about a preferred land-transport regime. The paper has two sections: (1) the role of distribution centres in the chain of transport and (2) the impact of distribution centres on the environment. The first section investigates the feasibility of the implementation of distribution centres in the State of Victoria with respect to rail line capacity and location allocation. The second section presents an additional simulation model that investigates the role of a distribution centre in relation to the amount of atmospheric pollution produced by rail and road, while containers are carried between port and destination.  相似文献   

11.
The awareness of the consequences of a further rise in transport for the environment has not only been a matter of concern for scientific researchers but also for planners and policymakers. In fact, the environment is now an ever present factor in the new political agenda and issues of excessive traffic congestion and global atmospheric pollution are increasingly attracting administrators' attention. One of the most important scenarios proposed for the protection of the environment, taking into account the adverse effects of traffic, is the redistribution of freight transport demand. In this paper the Italian situation has been tested, evidencing productive sectors and regions really benefiting from a more effective redistribution of trade flows among existing links on the freight network. This pattern is estimated by evaluating substitution elasticities before and after the introduction of a pollution tax. Numerical simulations, in terms of reduction of pollution emissions and transportation costs, are also provided.  相似文献   

12.
This paper presents the impact of fuel price increases on the market area of intermodal transport terminals. Aim of this research is to determine whether an increase in fuel prices is sufficient enough to raise the market area of intermodal transport to the same degree that would be accomplished by stimulating intermodal transport through policy instruments. Therefore, several fuel price scenarios are analysed in order to verify the impact of different fuel price evolutions on the market area of unimodal road transport compared to intermodal transport in Belgium. The LAMBIT-model (Location Analysis for Belgian Intermodal Terminals), which is a GIS-based model (Macharis and Pekin, 2008), is used to analyse the different fuel price increases and enables a visualisation of the impact on the market area. The LAMBIT model incorporates the different network layers for each transport mode by setting up a GIS network that includes four different layers: the road network, the rail network, the inland waterways network and the final haulage network. The geographic locations of the intermodal terminals and the port of Antwerp are added as nodes in the network and the Belgian municipality centres are defined and connected to the different network layers. Based on the different fuel price scenarios representing respectively a fuel price increase with 10% (low price case), 50% (business as usual case) and 90% (high price case), the results of the LAMBIT model show that the market areas rise in favour of intermodal barge/road and intermodal rail/road. Depending on the scenario, the degree of modal shift however differs. Additionally, in order to compare policy measures with the effect of a fuel price increase, the internalisation of the external costs is analysed with the LAMBIT model. For some years, the European Commission is supporting the idea that transportation costs should reflect the true impacts on environment and society, and is relentlessly pushing towards the so called ‘internalisation of external costs’ as a policy instrument in order to establish fair and efficient pricing of different transport modes. This requires monetarizing the external effects of transport and adding them to the already internalized costs in order to give the correct price signals. Results of this comparative analysis performed with the LAMBIT model are also presented in this paper.  相似文献   

13.
Companies working in a collaboration are able to achieve higher vehicle capacity utilisation and reduced empty running, resulting in lower costs and improved sustainability through reduced emissions and congestion. Collaboration produces higher volumes of goods to be moved than individual companies which means that further efficiencies may be possible by relaxing the freight mode constraints and considering rail and higher capacity vehicles. This paper explains how real world data has been used in a model to quantify the economic and environmental benefits in the FMCG sector delivered through collaboration utilising road and rail freight modes. Data for one month was provided by 10 FMCG companies and included freight transport flows between depots and customers, inter depot movements, and supplier collections. Detailed road and rail costs and operating characteristics were obtained and, with the transport flows, applied to a network design model which was used to validate the company data sets. A strategy examining the potential use of alternative higher capacity vehicles and rail for the flows between nine regional consolidation centres showed cost and CO2 savings. Just under half the inter-regional flows benefited from double deck trailers, longer heavier vehicles for 30% of the flows and rail with different wagon configurations for the rest. In summary there was a 23% reduction in cost with 58% fewer road kilometres and a 46% reduction in CO2 emissions. The ability to backhaul the same mode of transport between most of the regional centres was one of the strengths of this strategy.  相似文献   

14.
The demand for inland freight transport in Europe is mainly met by road transport, leading to unsustainable impacts such as air pollution, greenhouse gas emissions and congestion. Since rail transport has lower externalities than road transport, a modal shift from road to rail is an accepted policy goal for achieving a more sustainable and competitive transport system. However, intermodal road–rail transport is mainly competitive for long-distance transport, and as a consequence, the potential for modal shift is limited. The cost efficiency of road–rail intermodal transport is particularly sensitive to pre- and post-haulage (PPH) costs, since this activity typically has a larger cost compared with its share of the total distance in the transport chain. For intermodal transportation over shorter distances, for example, below 300 km and where there are substantial PPH activities at both ends of the chain, the competitiveness of the intermodal transport system compared with that of direct road is low. Improving the efficiency of PPH activities is, therefore, of utmost importance for the competitiveness of the intermodal transport system. This paper looks into the issue of improving the cost efficiency of an intermodal transport chain by implementing an innovative and flexible legal framework regarding the PPH activities in the chain. By extending the legal framework with exemptions for longer vehicles in PPH, the cost efficiency could be greatly improved. The purpose of such a framework is to allow and enable, for PPH exclusively, the use of 2?×?40 foot or even two semi-trailers using only one vehicle in the context of the Swedish regulatory framework. This paper develops a strategic calculation model for assessing and investigating the consequences of such a framework and investigates the framework's potential in terms of cost efficiency. The model in combination with a sensitivity analysis of input variables gives a comprehensive understanding of the effects of PPH under different circumstances. From the results, it is evident that there are substantial positive effects associated with a PPH framework of longer vehicles. Results indicate that a typical shipper may experience cost reductions of about 5–10% of the total costs of the intermodal transport chain. In summary, a more innovative and flexible legal framework regarding vehicle length in the PPH links can contribute to a greater modal shift, improved cost efficiency and more environmentally friendly transportation systems.  相似文献   

15.
Electric vehicles (EVs) are considered as a feasible alternative to traditional vehicles. Few studies have addressed the impacts of policies supporting EVs in urban freight transport. To cast light on this topic, we established a framework combining an optimization model with economic analysis to determine the optimal behavior of an individual delivery service provider company and social impacts (e.g., externalities and welfare) in response to policies designed to support EVs, such as purchase subsidy, limited access (zone fee) to congestion/low-emission zones with exemptions for EVs, and vehicle taxes with exemptions for EVs. Numerical experiments showed that the zone fee can increase the company’s total logistics costs but improve the social welfare. It greatly reduced the external cost inside the congestion/low-emission zone with a high population, dense pollution, and heavy traffic. The vehicle taxes and subsidy were found to have the same influence on the company and society, although they have different effects with low tax/subsidy rates because their different effects on vehicle routing plans. Finally, we performed a sensitivity analysis. Local factors at the company and city levels (e.g., types of vehicle and transport network) are also important to designing efficient policies for urban logistics that support EVs.  相似文献   

16.
From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2% of private costs and user fees would need to be increased about threefold to internalize these external costs.  相似文献   

17.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights.  相似文献   

18.
The objective of the work was to evaluate the potential user response to distance and time based road pricing of a sample of individuals drawn randomly from a group of volunteers in Dublin. The road use pricing charge levels were selected to match the marginal external costs of car transport i.e. those costs not currently paid by the car user. Such costs include marginal external costs of congestion, air pollution and noise. The project formed part of the EU DGXVII EUROPRICE project where one of the objectives was to evaluate the impact of road use pricing on private transport demand. Estimates of the marginal external costs of car travel had been previously made for Dublin in an EU DGVII project entitled TRENEN II STRAN and the results were used to select the road pricing charges in the trial. The distance travelled and travel time of a particular individual's work trip were noted. Charges per unit distance and time were applied so that the individual would incur a total charge for their average peak period work trip of 6.4 euro; the average marginal external cost of a peak period trip in Dublin, as estimated by the TRENEN model. Although the sample of individuals was relatively small, the indications from the results are worthy of note and further investigation on a larger sample. A significant reduction in the number of peak period trips was evident, of the order of 22%, resulting from trip suppression and transfer to other modes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
This paper presents a survey of the empirical literature on the effects of climate change and weather conditions on the transport sector. Despite mixed evidence on many issues, several patterns can be observed. On a global scale especially shifts in tourism and agricultural production due to increased temperatures may lead to shifts in passenger and freight transport. The predicted rise in sea levels and the associated increase in frequency and intensity of storm surges and flooding incidences may furthermore be some of the most worrying consequences of climate change, especially for coastal areas. Climate change related shifts in weather patterns might also cause infrastructure disruptions. Clear patterns are that precipitation affects road safety by increasing accident frequency but decreasing severity. Precipitation also increases congestion, especially during peak hours. Furthermore, an increased frequency of low water levels may considerably increase costs of inland waterway transport. Despite these insights, the net impact of climate change on generalised costs of the various transport modes are uncertain and ambiguous, with a possible exception for inland waterway transport.  相似文献   

20.
Urban car transportation is a cause of climate change but is also associated with additional burdens such as traffic congestion and air pollution. Studies of external costs and potential impacts of travel demand management help to define policy instruments that mitigate the damaging impact of transportation. Here, we analyze different externalities of car transportation in Beijing and show that social costs induced by motorized transportation are equivalent to about 7.5–15.0% of Beijing’s GDP. Congestion and air pollution contribute the most with climate change costs being the most uncertain. We show that a road charge could not only address congestion but also has environmental benefits. The paper investigates the role of demand elasticities and demonstrates that joint demand and supply-side policies provide considerable synergies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号