首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 968 毫秒
1.
高速列车空气动力学特性的风洞试验研究   总被引:1,自引:0,他引:1  
通过对2种头型高速列车1:8模型在8m×6m风洞开展的试验,比较了2种头型高速列车的气动特性,并进行了头车大侧风安全性的试验研究.结果表明,优化头型高速列车的气动阻力明显小于原型车的气动阻力,优化头型的3车编组列车的全车气动阻力比原型车约小3.7%;优化头型列车的纵向气动特性比原型车略差;2种头型的横向气动特性差异很小.  相似文献   

2.
为掌握强横风作用下高速受电弓弓头抬升力、整弓气动力以及风致振动特性,在中航工业气动院FL-9开展风洞试验研究.试验风速为100~400 km/h,间隔50 km/h;侧偏角为0~30°间隔5°;测试了受电弓在不同状态下的气动力、弓头抬升力以及关键部件的振动加速度.通过对试验结果进行分析,给出了受电弓气动力、弓头抬升力、风致振动随风速、侧偏角、升降弓的变化规律.试验结果可为开展高速列车弓网关系研究、弓网匹配设计提供试验数据支撑.  相似文献   

3.
我国对列车气动阻力的研究主要考虑列车的头型、断面形状和底部外形等方面,在受电弓减阻方面也主要是考虑受电弓的结构外形,然而对于受电弓残阻的风洞试验研究比较少.为了获得某高速列车的空气动力特性,并考察受电弓各种减阻措施的效果,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中进行了列车模型的风洞试验,在风洞试验中通过在受电弓前部安装各种导流罩和风挡来测试其对受电弓阻力的影响.试验结果表明:受电弓的存在会对列车的气动阻力有约3.2%的增加;在头车尾部安装反向导流罩能有效的降低受电弓的气动阻力;在受电弓前郝安装风挡,这种风挡在侧偏角为0°时对受电弓的减阻有一定效果.  相似文献   

4.
横风作用下高速列车安全运行速度限值的研究   总被引:2,自引:0,他引:2  
横风作用下的列车安全运行速度限值应通过列车气动特性和车辆轨道动力学特性的分析得到。以我国CRH3型高速列车实车为原型,考虑真实受电弓、转向架等列车的细部特征,假定列车在平地上行驶,对列车速度分别为200、250、300、350和380km/h,横风速度分别为10、15、20、25和30m/s,风向角为90°的25个工况进行气动特性的数值模拟,并采用国内实测轨道谱和德国轨道谱分别对这25个工况的车辆轨道动力学性能进行仿真计算和对比分析。结合国家标准和技术规范,给出CRH3型列车在平地上运行时,横风风速与列车最大安全运行速度之间的对应关系,为横风作用下的列车运行安全控制提供参考。  相似文献   

5.
高速列车受电弓低速风洞试验技术   总被引:6,自引:0,他引:6  
研究目的:为了研究高速列车受电弓头动态接触压力特性和整弓气动阻力,在中国航天空气动力技术研究院FD-09低速风洞进行试验。试验的目的是为受电弓架结构优化设计和实际使用提供科学依据。研究方法:试验方法是相对气流方向,受电弓位置分顺弓(闭口)和逆弓(开口),弓头高度分别有900 mm、1 300 mm和2 300 mm。试验风速范围从100 km/h到280 km/h,间隔为20 km/h。研究结果:试验结果表明,两种弓架气动阻力存在很大差异,因此,弓的气动力特性改进还有很大潜力。  相似文献   

6.
动车组头型不同,对气动力学效应的影响也不尽相同。为探讨头型对动车组隧道气动效应的影响,将CRH2C型动车组和在其基础上进行头型优化改进的CRH380A型动车组在不同工况下的试验数据进行对比分析,结果表明头型的改进有利于改善动车组的车外流场分布,有利于提高旅客乘坐舒适度。  相似文献   

7.
随着我国铁路的高速发展,以及最近几年技术引进、消化吸收和再创新之后,我国已经开始研制具有自主知识产权的速度380km/h的高速列车,其中高速列车的头型研制是高速列车研制中至关重要的一步,减阻降噪是头型研制的关键技术,主要借助国外一些成功经验,对新研制的新一代高速列车头型进行了气动噪声风洞试验,对车头附近结构气动噪声分布和性质进行了详细的分析和总结。  相似文献   

8.
双层高速动车组因其重心高、迎风面积大等特点,运行安全受横风影响更为显著。以我国某双层高速动车组作为研究对象,建立横风条件下3节车辆编组的气动仿真分析模型,通过与风洞试验数据比较,验证模型有效性,仿真得到了在不同横风条件下各车辆所受到的气动载荷,基于EN14067标准中的五质量模型方法,分析了横风条件下双层高速动车组倾覆安全性,得到了列车临界倾覆风速曲线。研究结果表明:横风条件下头车气动载荷最大,且在60°左右的侧滑角时达到最大;当横风垂直于列车行进方向时,临界倾覆风速随车速增加而下降,在车速为80 km/h左右,其下降趋势出现明显的变化,动车组以200 km/h速度运行在平地时,头车临界倾覆风速为22.5 m/s。在同等车速条件下,头车临界倾覆风速随风向角的增加迅速下降,平地路况在风向角为90°时取得最小值,路堤和桥梁路况在风向角为80°时取得最小值。在平地、10 m高度路堤和桥梁3种路况条件下,路堤情况的倾覆风速最小。横向未平衡加速度、空重车状态对列车横风安全性也有显著影响,当加速度与横风风速同向时,其头车临界倾覆风速值随横向未平衡加速度的增加而下降,而重车状态下的临界倾覆风速高于同...  相似文献   

9.
为减少高速列车在运行中的空气阻力,提高列车运行效率、节约能耗,提出凸包非光滑表面减阻技术应用于高速列车领域。文中以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻效果。首先利用PRO/Engineer建立非光滑表面CRH3型头车+中间车+尾车的简化模型,将模型导入ICEM CFD软件并根据计算精度的需要划分不同网格区域,得到较高质量的非结构网格,再应用FLUENT软件中的k-ε湍流模型对稳态运行速度为300 km/h时的列车进行模拟仿真,计算列车空气阻力,对比分析凸包的阵列距离、半径和高度对减阻性能的影响。并从头车、尾部的压力图和附近速度矢量图两方面来反映凸包非光滑表面对高速列车压差阻力的影响;从湍流动能和湍流强度角度解释凸包非光滑表面对高速列车黏性阻力变化的作用。仿真结果表明:列车的气动阻力随凸包阵列距离的增大而减小、随凸包半径的减小而减小、随凸包高度的减小而先减小后又增大;当凸包半径为40 mm,阵列距离为460 mm,凸包高度为10 mm时,列车具有最好的减阻效果;相对于光滑表面列车,在头车加设凸包而尾车不加设时,头车阻力可小至1239 N,头车减阻率为10.67%,总阻力为3591 N,总减阻率为3.80%。可见,通过在头车加设凸包可以改变边界层湍流特性达到减小列车气动阻力的效果。期望文中的研究为高速列车后期减阻方法研究提供一定的参考。  相似文献   

10.
良好的横风运行安全性是实现高速动车组速度能力提升的有效手段.现搭建了基于空气动力学和车辆系统动力学的高速列车车辆横风运行安全性耦合计算模型,根据动车组在不同车速(150~300 km/h)和风速(10~35 m/s)下的气动力和气动力矩计算结果,分析了不同气动载荷对动车组动力学性能的影响.在此基础上,提出了CRH3G动车组的横风运行安全速度域.  相似文献   

11.
对3~8辆编组列车以350km· h-1速度运行时,不同速度横风作用下的气动特性进行仿真研究,并建立列车的阻力系数与列车编组辆数之间的无量纲关系.研究结果表明:对3辆车编组列车的气动特性分析不能取代对其他编成辆数列车的几动特性分析;不同编成辆数列车阻力系数随着横风风速的增加而增大,3辆车编组列车的阻力系数不超过8辆车编组的列车的一半;列车的侧向力系数和倾覆力矩系数随着列车编成辆数的增加而减小;列车编成辆数对头车的阻力系数、升力系数、侧向力系数和倾覆力矩系数影响较小,但是对尾车的影响较大;头车的侧向力系数和倾覆力矩系数明显高于尾车和中间车,尾车的倾覆力矩系数最大值不超过0.4,而头车的最大可达0.7;由于头车的气动安全性比其他位置车辆的低,用头车的气动安全性评估整个列车的气动安全性会偏于保守,但合理、可行.  相似文献   

12.
基于延迟脱体涡算法和滑移网格技术,建立CRH380A型列车的含有转向架的三维可压缩瞬态仿真模型,模拟研究高速列车气动力、速度场和表面压力这3大绕流特性的变化规律。结果表明:延迟脱体涡算法能较好地捕捉列车通过隧道时的气动特性;当列车头部刚驶入隧道时,气动阻力迅速升高并在车头完全进入隧道时达到最大值,列车下方2侧的速度纵向分量会急剧增加,位于靠近设备舱位置的速度纵向分量会显著降低;当尾车刚驶入隧道时,隧道内壁与列车侧面之间的流场会出现回流区;当尾车全部刚驶入隧道时,气动升力和侧向力骤然增加;当列车全部驶入隧道后,气动力的波动幅值均明显升高;列车通过隧道过程中,列车侧面压力整体上呈现先增后减、最后维持周期性波动的趋势,处于尾流区的车尾部位具有更强烈的波动特征;列车裙板和车底的表面压力整体上均呈先减后增、最后维持在较高幅值波动的趋势,对列车相关结构的疲劳强度产生不利影响。  相似文献   

13.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析。研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性的影响;分析得出头车和中车的风压分布和气动力变化规律显著不同,随着风向角的增大,头车侧力系数和升力系数先增大后减小,在风向角为60°左右达到最大值,中车侧力系数和升力系数一直增大,列车绕流状态具有明显的三维特性,不同风向角下气流绕列车呈不同绕流形式,在小于60°风向角下,列车绕流场主要呈流线型结构绕流特性,而大于60°风向角下,列车绕流场主要表现为钝体绕流特性,两种不同绕流状态导致列车气动力特性差异。  相似文献   

14.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

15.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

16.
采用CRH2-061C动车组,以180~320km.h-1速度往返运行,对某特长水下隧道下行线进行气动效应试验研究。研究结果表明:隧道内瞬变压力、列车风、气动载荷和隧道洞口微气压波值均随着车速的增加而增加,车厢内舒适度随着车速的增加而减少;隧道南口的微气压波值、首波压力梯度均小于北口,这主要是由于南、北口的缓冲结构型式存在差异;隧道内附属设施受到的气动荷载、车内气压3s变化值均在相关标准的要求值之内;车速大于250km.h-1时,乘员有耳鸣和不舒适感。根据研究结果提出如下建议:CRH2-061C动车组通过该隧道的合理速度为260km.h-1;开启隧道内联络通道或布置吸能材料以衰减压力波的传播能量;研究制订复合型舒适度控制标准。  相似文献   

17.
为研究高速列车过隧道时对接触网系统安全性的影响,采用数值模拟的方法,利用滑移网格技术,对不同编组的高速列车以350 km/h的速度分别通过单线隧道和双线隧道的过程进行仿真,通过监测吊柱位置处的气流速度和气体压力,得到隧道内活塞风特性;基于气动特性仿真结果,对接触线风振响应进行模拟仿真,得到隧道内接触线位移偏量范围。结果表明,列车编组越多,隧道断面越小,列车车速越大,形成的列车风速度越大,气动特性越显著;列车进入隧道入口瞬间,接触线有最大正向位移偏量为2.92 mm。  相似文献   

18.
针对常温常导高速磁浮列车头型的几何特点,将其分为流线型和设备舱2个部分,采用改进的VMF参数化方法和曲面离散方法,分别进行参数化设计;对提取的12个设计参数,结合计算流体力学方法、支持向量机模型和多目标粒子群算法,以整车气动阻力系数和尾车气动升力系数为优化目标,以头车气动升力系数为约束条件,进行高速磁浮列车头型多目标气动优化设计,并进行设计参数的灵敏度分析;对优化外形进行工程化改进和风洞试验验证。结果表明:参数化设计方法能够利用较少的设计参数描述高速磁浮列车头型;减少计算量且提高优化效率的支持向量机模型的预测精度满足设计要求;头型长度是影响高速磁浮列车气动性能的关键设计参数,水平剖面型线对头尾车气动升力的影响较为显著;较原始外形,采用根据工程设计要求改进的优化外形后,整车气动阻力系数减小19.2%,头车和尾车气动升力系数分别减小24.8%和51.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号