首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
Headway control strategies have been proposed as methods for correcting transit service irregularities and thereby reducing passenger wait times at stops. This paper addresses a particular strategy which can be implemented on high frequency routes (headways under 10–12 minutes), in which buses are held at a control stop to a threshold headway. An algorithm is developed which yields the optimal control stop location and optimal threshold headway with respect to a system wait function. The specification of the wait function is based on the development of several empirical models, including a headway variation model and an average delay time model at control stops. A conclusion is reached that the headway variation does not increase linearly along a route, a common assumption made in many previous studies. Furthermore, the location of the optimal control stop and threshold value are sensitive to the passenger boarding profile, as expected. The algorithm itself appears to have practical application to conventional transit operations.  相似文献   

2.
In the absence of system control strategies, it is common to observe bus bunching in transit operations. A transit operator would benefit from an accurate forecast of bus operations in order to control the system before it becomes too disrupted to be restored to a stable condition. To accomplish this, we present a general bus prediction framework. This framework relies on a stochastic and event-based bus operation model that provides sets of possible bus trajectories based on the observation of current bus positions, available via global positioning system (GPS) data. The median of the set of possible trajectories, called a particle, is used as the prediction. In particular, this enables the anticipation of irregularities between buses. Several bus models are proposed depending on the dwell and inter-stop running time representations. These models are calibrated and applied to a real case study thanks to the high quality data provided by TriMet (the Portland, Oregon, USA transit district). Predictions are finally evaluated by an a posteriori comparison with the real trajectories. The results highlight that only bus models accounting for the bus load can provide valid forecasts of a bus route over a large prediction horizon, especially for headway variations. Accounting for traffic signal timings and actual traffic flows does not significantly improves the prediction. Such a framework paves the way for further development of refined dynamic control strategies for bus operations.  相似文献   

3.
This paper presents a transit simulation model designed to support evaluation of operations, planning and control, especially in the context of Advanced Public Transportation Systems (APTS). Examples of potential applications include frequency determination, evaluation of real-time control strategies for schedule maintenance and assessing the effects of vehicle scheduling on the level of service. Unlike most previous efforts in this area, the simulation model is built on a platform of a mesoscopic traffic simulation model, which allows modeling of the operation dynamics of large-scale transit systems taking into account the stochasticity due to interactions with road traffic. The capabilities of Mezzo as an evaluation tool of transit operations are demonstrated with an application to a real-world high-demand bus line in the Tel-Aviv metropolitan area under various scenarios. The headway distributions at two stops are compared with field observations and show good consistency between simulated and observed data.  相似文献   

4.
Stop spacing and service frequency (i.e., the inverse of headway) are key elements in transit service planning. The trade‐offs between increasing accessibility and reducing travel time, which affect transit system performance, need to be carefully evaluated. The objective of this study is to optimize stop spacing and headway for a feeder bus route, considering the relationship between the variance of inter‐arrival time (VIAT), which yields the minimum total cost (including user and operator costs). A solution algorithm, called successive substitution, is adapted to efficiently search for the optimal solutions. In a numerical example, the developed model is applied to planning a feeder bus route in Newark, New Jersey. The results indicate that the optimal stop spacing should be longer that those suggested by previous studies where the impact of VIAT was ignored. Reducing VIAT via certain operational control strategies (i.e., holding/stop‐skipping, transit signal priority) may shorten stop spacing and improve accessibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

6.
This paper proposes a new activity-based transit assignment model for investigating the scheduling (or timetabling) problem of transit services in multi-modal transit networks. The proposed model can be used to generate the short-term and long-term timetables of multimodal transit lines for transit operations and service planning purposes. The interaction between transit timetables and passenger activity-travel scheduling behaviors is captured by the proposed model, as the activity and travel choices of transit passengers are considered explicitly in terms of departure time choice, activity/trip chain choices, activity duration choice, transit line and mode choices. A heuristic solution algorithm which combines the Hooke–Jeeves method and an iterative supply–demand equilibrium approach is developed to solve the proposed model. Two numerical examples are presented to illustrate the differences between the activity-based approach and the traditional trip-based method, together with comparison on the effects of optimal timetables with even and uneven headways. It is shown that the passenger travel scheduling pattern derived from the activity-based approach is significantly different from that obtained by the trip-based method, and that a demand-sensitive (with uneven headway) timetable is more efficient than an even-headway timetable.  相似文献   

7.
Priority for public transit includes a large variety of measures, including improvements to infrastructure and vehicles. For vehicles, the low floor concept is of particular importance. The central points of priority measures, however, are improvements of traffic control by traffic signals. Here, an improved sensitivity regarding public transit vehicles is the key to a remarkable reduction of factors causing delay. Different techniques for a traffic actuated signal control and different strategies regarding the degree of priority are applied. Thus, especially the reliability of public transit operations is increased. The priority efforts must be embedded in an integrated plan covering the whole urban or metropolitan transportation system.  相似文献   

8.
This paper presents a traffic control system that can work standalone to handle various boundary conditions of the recurrent, non-recurrent congestion, transit signal priority and downstream blockage conditions to improve the overall traffic network vehicular productivity and efficiency. The control system uses field detectors’ data to determine the boundary conditions of all incoming and exit links. The developed system is interfaced with CORSIM micro-simulation for rigorous evaluations with different types of signal phase settings. The comparative performance of this control logic is quite satisfactory for some of the most frequently used phase settings in the network with a high number of junctions under highly congested conditions.  相似文献   

9.
This paper describes a connected-vehicle-based system architecture which can provide more precise and comprehensive information on bus movements and passenger status. Then a dynamic control method is proposed using connected vehicle data. Traditionally, the bus bunching problem has been formulated into one of two types of optimization problem. The first uses total passenger time cost as the objective function and capacity, safe headway, and other factors as constraints. Due to the large number of scenarios considered, this type of framework is inefficient for real-time implementation. The other type uses headway adherence as the objective and applies a feedback control framework to minimize headway variations. Due to the simplicity in the formulation and solution algorithms, the headway-based models are more suitable for real-time transit operations. However, the headway-based feedback control framework proposed in the literature still assumes homogeneous conditions at all bus stations, and does not consider restricting passenger loads within the capacity constraints. In this paper, a dynamic control framework is proposed to improve not only headway adherence but also maintain the stability of passenger load within bus capacity in both homogenous and heterogeneous situations at bus stations. The study provides the stability conditions for optimal control with heterogeneous bus conditions and derives optimal control strategies to minimize passenger transit cost while maintaining vehicle loading within capacity constraints. The proposed model is validated with a numerical analysis and case study based on field data collected in Chengdu, China. The results show that the proposed model performs well on high-demand bus routes.  相似文献   

10.
Vehicle discharge headway at signalized intersections is of great importance in junction analysis. However, it is very difficult to simulate the discharge headway of individual queued vehicle because of the great variations in the driver behaviors, vehicle characteristics and traffic environment. The current study proposes a neural network (NN) approach to simulate the queued vehicle discharge headway. A computer-based three-layered (NN) model was developed for the estimation of discharge headway. The widely used backpropagation algorithm has been utilized in training the NN model. The NN model was trained, validated with field data and then compared with other headway models. It was found that the NN model performed better. Model sensitivity analysis was conducted to further validate the applicability of the model. Results showed that the NN model could produce reasonable discharge headway estimates for individual vehicles.  相似文献   

11.
This paper explores at the planning level the benefits of coordinating tram movements and signal timings at controlled intersections. Although trams may have dedicated travel lanes, they mostly operate in a mixed traffic environment at intersections. To ensure tram progression, pre-set signal timings at intersections are adjusted by activating Transit Signal Priority (TSP) actions, which inevitably add delays to the auto traffic. A mixed integer program is proposed for jointly determining tram schedules for a single tram line and modifying signal timings at major controlled intersections. The objective is to minimize the weighted sum of the total tram travel time and TSP’s negative impacts on other traffic. A real-world case study of Line 5 of the Shenyang Hunnan Modern Tramway shows that by extending the dwell time or link travel time we can significantly reduce the TSP’s negative impacts on the auto traffic while only slightly increasing tram travel times.  相似文献   

12.
This study proposes Reinforcement Learning (RL) based algorithm for finding optimum signal timings in Coordinated Signalized Networks (CSN) for fixed set of link flows. For this purpose, MOdified REinforcement Learning algorithm with TRANSYT-7F (MORELTRANS) model is proposed by way of combining RL algorithm and TRANSYT-7F. The modified RL differs from other RL algorithms since it takes advantage of the best solution obtained from the previous learning episode by generating a sub-environment at each learning episode as the same size of original environment. On the other hand, TRANSYT-7F traffic model is used in order to determine network performance index, namely disutility index. Numerical application is conducted on medium sized coordinated signalized road network. Results indicated that the MORELTRANS produced slightly better results than the GA in signal timing optimization in terms of objective function value while it outperformed than the HC. In order to show the capability of the proposed model for heavy demand condition, two cases in which link flows are increased by 20% and 50% with respect to the base case are considered. It is found that the MORELTRANS is able to reach good solutions for signal timing optimization even if demand became increased.  相似文献   

13.
Transit signal priority (TSP) may be combined with road-space priority (RSP) measures to increase its effectiveness. Previous studies have investigated the combination of TSP and RSP measures, such as TSP with dedicated bus lanes (DBLs) and TSP with queue jump lanes (QJLs). However, in these studies, combined effects are usually not compared with separate effects of each measure. In addition, there is no comprehensive study dedicated to understanding combined effects of TSP and RSP measures. It remains unclear whether combining TSP and RSP measures creates an additive effect where the combined effect of TSP and RSP measures is equal to the sum of their separate effects. The existence of such an additive effect would suggest considerable benefits from combining TSP and RSP measures. This paper explores combined effects of TSP and RSP measures, including TSP with DBLs and TSP with QJLs. Analytical results based on time-space diagrams indicate that at an intersection level, the combined effect on bus delay savings is smaller than the additive effect if there is no nearside bus stop and the traffic condition in the base case is under-saturated or near-saturated. With a near-side bus stop, the combined effect on bus delay savings at an intersection level can be better than the additive effect (or over-additive effect), depending on dwell time, distance from the bus stop to the stop line, traffic demand, and cycle length. In addition, analytical results suggest that at an arterial level, the combined effect on bus delay savings can be the over-additive effect with suitable signal offsets. These results are confirmed by a micro-simulation case study. Combined effects on arterial and side-street traffic delays are also discussed.  相似文献   

14.
Agent technology is rapidly emerging as a powerful computing paradigm to cope with the complexity in dynamic distributed systems, such as traffic control and management systems. However, while a number of agent-based traffic control and management systems have been proposed and the multi-agent systems have been studied, to the best of our knowledge, the mobile agent technology has not been applied to this field. In this paper, we propose to integrate mobile agent technology with multi-agent systems to enhance the ability of the traffic management systems to deal with the uncertainty in a dynamic environment. In particular, we have developed an IEEE FIPA compliant mobile agent system called Mobile-C and designed an agent-based real-time traffic detection and management system (ABRTTDMS). The system based on Mobile-C takes advantages of both stationary agents and mobile agents. The use of mobile agents allows ABRTTDMS dynamically deploying new control algorithms and operations to respond unforeseen events and conditions. Mobility also reduces incident response time and data transmission over the network. The simulation of using mobile agents for dynamic algorithm and operation deployment demonstrates that mobile agent approach offers great flexibility in managing dynamics in complex systems.  相似文献   

15.
The transportation demand is rapidly growing in metropolises, resulting in chronic traffic congestions in dense downtown areas. Adaptive traffic signal control as the principle part of intelligent transportation systems has a primary role to effectively reduce traffic congestion by making a real-time adaptation in response to the changing traffic network dynamics. Reinforcement learning (RL) is an effective approach in machine learning that has been applied for designing adaptive traffic signal controllers. One of the most efficient and robust type of RL algorithms are continuous state actor-critic algorithms that have the advantage of fast learning and the ability to generalize to new and unseen traffic conditions. These algorithms are utilized in this paper to design adaptive traffic signal controllers called actor-critic adaptive traffic signal controllers (A-CATs controllers).The contribution of the present work rests on the integration of three threads: (a) showing performance comparisons of both discrete and continuous A-CATs controllers in a traffic network with recurring congestion (24-h traffic demand) in the upper downtown core of Tehran city, (b) analyzing the effects of different traffic disruptions including opportunistic pedestrians crossing, parking lane, non-recurring congestion, and different levels of sensor noise on the performance of A-CATS controllers, and (c) comparing the performance of different function approximators (tile coding and radial basis function) on the learning of A-CATs controllers. To this end, first an agent-based traffic simulation of the study area is carried out. Then six different scenarios are conducted to find the best A-CATs controller that is robust enough against different traffic disruptions. We observe that the A-CATs controller based on radial basis function networks (RBF (5)) outperforms others. This controller is benchmarked against controllers of discrete state Q-learning, Bayesian Q-learning, fixed time and actuated controllers; and the results reveal that it consistently outperforms them.  相似文献   

16.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.

Continued interest in Personal Rapid Transit (PRT) systems as one solution to urban traffic congestion emphasizes the need for careful consideration of the safety of short headway automated transit systems. Current approaches to the determination of safe headways are reviewed. The reduction in headway which could be achieved by improved braking and signaling hardware is outlined. Improved design of emergency brakes is the most important single factor in the reduction of safe headways.

Very short headway systems are reviewed from a safety standpoint. Such systems might be safely operated if operation at intermediate headways (separations on the order of the stopping distance) can be avoided.  相似文献   

18.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

19.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号