首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为研究路基冻胀-融化-沉降循环作用下,无砟轨道结构的伤损演化规律和变形特性,基于有限单元法及混凝土塑性损伤模型,建立路基上单元板式无砟轨道静力分析模型。计算结果表明:(1)小波长条件下,底座板在冻胀过程中易在幅值两侧对应第一块轨道板的板端萌生损伤,但随波长的增加,轨道结构塑性损伤得以缓解;(2)路基冻胀-融化-沉降循环作用引起轨道不平顺,其幅值呈增加-减小-反向增加的变化趋势,但波长较小时,反向增加的幅度极小;(3)路基回落过程中,轨道结构存在部分残余变形;(4)底座板与基床表层间的离缝呈张开-闭合-张开的循环性变化规律,离缝宽度随路基变形幅值的增大而增大;(5)路基变形波长对离缝宽度及纵向分布有极大影响。  相似文献   

2.
研究目的:季冻区高速铁路路基冻胀变形较为普遍,局部冻胀变形会给无砟轨道受力带来较大影响,甚至有可能带来结构层开裂。为此,本文建立高速铁路无砟轨道-路基冻胀耦合计算模型,以路基冻胀变形曲线作为冻胀变形的输入条件,分析路基冻胀变形波长和幅值对不同类型无砟轨道结构受力的影响,同时对CRTSⅢ型板式无砟轨道底座板凹槽限位优化为凸台限位方案以及下部设置沥青混凝土封闭层的影响进行分析。研究结论:(1)路基冻胀变形幅值越大,冻胀波长越小,无砟轨道结构层应力均越大;(2)双块式无砟轨道在路基冻胀下道床板和支承层应力较大,易产生开裂,不宜应用于季冻区;(3)底座板限位凹槽是CRTSⅢ型板式无砟轨道在基础冻胀变形下的受力薄弱环节,将其优化为凸台后,能够较大程度降低结构在基础变形下受力;(4)在CRTSⅢ型板式无砟轨道底座板下设置沥青混凝土层时,轨道板及底座板应力均有降低趋势,沥青混凝土层弹模越低,应力降低幅度越大;(5)本研究结论可为基础冻胀变形控制标准的制定和季冻区高速铁路无砟轨道的选型提供参考。  相似文献   

3.
纵连式无砟轨道在路基冻胀区域极易产生轨道结构断裂破坏及结构层离缝等病害。为研究纵连式无砟轨道在路基冻胀状态下的损伤机理,文章建立车辆-轨道-路基冻胀一体化动力学分析模型,对路基冻胀状态下轮轨动力响应特征、轨道结构动力响应特征及影响因素进行分析。结果表明:路基冻胀波长为10 m时,双块式无砟轨道各动力特征达到最大值;冻胀波长大于20 m时,各动力特征逐渐趋于稳定;列车荷载在层间离缝位置处使得轨道结构反弯,轨道结构层顶部纵向拉应力增大;20 m以下冻胀波时,拉应力超过或接近设计强度值;无砟轨道各动力响应特征最大值随冻胀幅值的增加显著增大,季冻区施工及运营期间应控制冻胀幅值增加。  相似文献   

4.
以路桥过渡段CRTSⅢ型板式无砟轨道为研究对象,采用ABAQUS软件,建立非线性分析模型,基于混凝土塑性伤损理论,研究严寒地区路桥过渡段无砟轨道结构的变形及损伤。结果表明:过渡段冻胀变形对底座板损伤影响较大,而过渡段沉降变形对复合板(轨道板与自密实混凝土结合体)和底座板损伤均有影响;当过渡段长度较短时,冻胀变形导致的结构层间离缝在过渡段变形起始位置最严重;冻胀变形导致的结构层间离缝峰值较大,复合板与底座板、底座板与路基层间离缝的峰值分别为3.39和5.91 mm,而沉降变形导致的结构层间离缝范围较大;温度荷载与沉降变形共同作用导致底座板出现初始裂纹的沉降变形从沉降变形单独作用时的25.5 mm大幅减小到10.4~18.3 mm;温度荷载与冻胀或沉降变形共同作用复合板与底座板层间离缝峰值均发生在轨道板板缝处,分别为5.47和4.97 mm;当冻胀或沉降变形与在过渡段变形末端或变形起始点左侧的列车荷载共同作用时,底座板的损伤最为严重。  相似文献   

5.
在川中红层泥岩地区CRTS Ⅲ型板式无砟轨道会设置传力杆限制沿线路纵向路基上拱变形,但传力杆对上拱地区无砟轨道的影响规律尚不明确。为了探究传力杆的性能,建立无砟轨道-路基上拱-传力杆有限元模型,在路基底部施加余弦型上拱波形位移作为外部条件,同时在底座板接缝处设置传力杆。将传力杆布置方式、直径、间距作为影响因子,设置无传力杆对照组进行对比分析。针对红层泥岩路基上拱,研究结果表明:1)设置传力杆与不设置传力杆复合板与底座板最大离缝分别为1.14 mm和4.82 mm,底座板与路基最大离缝分别为3.16 mm和5.29 mm,表明传力杆的设置能较好降低最大层间离缝,尤其是复合板与底座板轨道结构之间的层间离缝。2)传力杆布置方式1(中性层均匀布置1排)下底座板板端应力为1.13 MPa,为传力杆布置方式2(上下2层、交错布置)下底座板板端应力2.98 MPa的37.9%,底座板板端应力较小,应力分布均匀。3)复合板与底座板最大离缝、底座板与路基最大离缝及底座板应力在传力杆直径为30 mm时分别为0.82 mm、1.66 mm、3.16 MPa,达到相对较小值。4)随着传力杆布置间距减小、传力杆...  相似文献   

6.
为揭示地面沉降对路基上单元板式无砟轨道平顺性的影响规律,通过建立路基上板式无砟轨道-路基有限元实体模型,充分考虑无砟轨道和路基的特性及其之间的接触方式,改变轨道结构层厚度和粘结方式,以此来进行地面沉降幅值、轨道结构层厚度和结构层间离缝对轨道不平顺的影响的研究。结果表明:地面发生沉降时,无砟轨道会发生跟随性的沉降,从上到下各层沉降值依次增大,且地面沉降幅值越大,轨道不平顺越明显;轨道结构层厚度越大,地面沉降对轨道平顺性的影响越小;轨道结构层间离缝对轨道平顺性有很大影响,尤其是无砟轨道与道床之间出现离缝时。  相似文献   

7.
应用有限元方法建立土质路基上CRTS III型板式无砟轨道系统空间耦合模型,研究路基不均匀沉降作用下板式轨道的受力和变形特性,以及路基发生不均匀沉降时底座板和路基表层之间接触应力和脱空区域的变化规律。结果表明:路基发生不均匀沉降时,无砟轨道结构在重力作用下会发生跟随性变形;轨道板、自密实混凝土和底座板在路基沉降作用下的应力受路基沉降波长和幅值的综合影响,路基沉降幅值越大,轨道各层受力越大,波长为20~30 m的路基沉降对轨道应力的影响较大;底座板和路基表层间的接触应力和脱空区域随着路基沉降幅值的增大而增大,随着路基沉降波长的增大出现先增大后减小的变化趋势。由此可见,路基不均匀沉降会对轨道结构的受力和变形产生明显影响,严重时会造成轨道脱空,对行车安全舒适性产生较大影响,应加以严格控制。  相似文献   

8.
在车辆荷载和温度作用下,CRTSⅢ型板式无砟轨道由于自密实混凝土层与底座板间产生离缝,发生应力集中和局部变形,对无砟轨道服役状态和使用寿命造成明显影响。基于ABAQUS有限元模型,计算车辆与温度不同荷载组合下,层间离缝横向和纵向发展对无砟轨道结构受力变形的影响,探究伤损演变规律和维修限值。研究结果表明:层间离缝宽度小于1.5m,轨道结构受力和变形的影响很小;离缝发展至两侧钢轨正下方后,轨道结构变形和应力均增大明显;离缝长度大于1.2m,对轨道板出现受拉裂缝和无离缝端上翘;正温度梯度荷载对轨道板弯折变形和自密实混凝土层纵横拉应力以及负温度梯度荷载对轨道板上翘和纵横拉应力均有叠加放大效应。  相似文献   

9.
研究目的:CRTSⅢ型板式无砟轨道层间离缝不仅影响轨道的动力响应,而且危及行车安全。本文以车辆及层间离缝CRTSⅢ型板式无砟轨道系统为研究对象,基于车辆-轨道耦合动力学理论,建立此系统动力学模型,探讨层间离缝宽度及长度对车体加速度、轮轨力、钢轨位移及加速度、轨道板位移及加速度、底座板位移及加速度等动力响应的影响规律。研究结论:(1)当层间离缝纵向长度为1. 2 m,层间离缝宽度超过1. 5 m时,上述动力响应随层间离缝宽度的增大而增大,车体加速度、轮轨力、钢轨位移及加速度增幅不大,但轨道板位移及加速度、底座板位移及加速度增幅显著,特别是轨道板位移及加速度,较正常状态最大增幅分别为121%和81. 9%;(2)层间离缝横向贯穿后,在离缝长度小于1. 2 m时,对车轨系统动力响应影响较小;在离缝长度为1. 2 m至2. 4 m时,系统各部件动力响应明显增大,当离缝扩展至轨道结构中心位置以后,系统各部件动力学响应增大更为明显,尤其是轨道板位移和加速度,较正常状态最大增幅达到18. 87倍和10. 38倍,在离缝长度等于3. 0 m时,钢轨竖向位移达到2. 45 mm,已超过规范要求限值,所以离缝长度应控制在3 m以内;(3)在层间离缝长度为4. 8 m时,车体竖向加速度达到1. 56 m/s2,已超过规范要求限值,危及列车行车安全;(4)本研究结果可为CRTSⅢ型板式无砟轨道层间离缝养护维修工作及行车安全提供指导。  相似文献   

10.
为降低夏季持续高温季节高速铁路线路中纵连板式轨道板胀板的风险及危害性,采用有限元仿真分析方法,对温度作用下层间离缝高度对于轨道板稳定性的影响进行了分析研究。通过建立无砟轨道结构全要素精细有限元分析模型,分别研究了高度均匀离缝和高度不均匀离缝对轨道板温度上拱变形的影响规律。分析结果表明,在均匀离缝两端的轨道板以及不均匀离缝位置对应的轨道板温度上拱变形随着离缝值的增大而显著增大,严重时可能干扰正常运营。  相似文献   

11.
研究目的:CRTSⅡ型板式无砟轨道施工过程中,轨道板窄缝浇筑后纵连前,轨道板处于一种偏心受压状态,在温度荷载作用下轨道板容易产生上拱变形现象。本文利用ANSYS软件,建立温度荷载作用下CRTSⅡ型轨道板上拱变形有限元力学分析模型。通过对轨道板上拱变形过程模拟,分析其上拱变形的基本规律,以及砂浆层粘结强度、板边离缝深度和轨道板温度梯度对轨道板竖向上拱临界温升幅度的影响。研究结论:(1)轨道板上拱变形从板端约第一扣件处逐渐向板中蔓延,当达到某一临界温升幅度ΔT时,将导致轨道板与砂浆层的粘结失效而分离;(2)轨道板上拱临界温升幅度随着粘接强度增大而增大,增大轨道板与砂浆层的粘结强度,不仅可以抑制和延缓轨道板上拱的发生,同时可减小板边上拱程度;(3)施工过程中,采取措施减少轨道板与砂浆层的离缝面积,有利于提高轨道板上拱的临界温升幅度;(4)温度梯度的作用会加速轨道板上拱变形;(5)不同温度状态下的轨道板上拱变形现象,可反映出轨道板与砂浆层之间的不同粘结状态;(6)该研究成果对于完善CRTSⅡ型板式轨道的施工技术具有指导意义。  相似文献   

12.
基于车辆-轨道耦合动力学理论和有限元方法,开展高速铁路无砟轨道路基不均匀冻胀变形对高速轮轨系统的动力学影响研究,分析不同程度的路基不均匀冻胀变形对高速车辆-轨道耦合系统振动响应的影响规律。研究结果表明:路基的不均匀冻胀变形会加剧轮轨动态相互作用,对行车安全性和乘车舒适性产生不良影响,同时易引起较强的轨道结构振动,进而影响轨道结构的长期服役性能;随着路基不均匀冻胀变形波长的减小和冻胀变形幅值的增大,高速车辆-轨道耦合系统的垂向振动动力学指标均出现增大趋势,研究发现应重点关注波长20 m以内的路基不均匀冻胀变形及其幅值的增大;对于路基不均匀冻胀变形较严重地段,可通过适当降低车辆的运行速度,以有效降低轮轨系统的动态相互作用,从而减小路基不均匀冻胀变形对高速行车安全性的影响,但是,限速措施对于改善高速乘车舒适性的效果并不明显。  相似文献   

13.
针对严寒、富水地区高速铁路无砟轨道层间冻胀问题,采用有限元软件,利用升温方法对离缝区域材料施加温度荷载使其体积膨胀来模拟冻胀,开展了无砟轨道层间冻胀特性研究。结果表明:无砟轨道层间冻胀可使钢轨、道床板产生类似于半波正弦分布的上拱变形,但对行车平顺性影响较小;层间拉应力随离缝深度的增加在离缝深度小于1. 25 m时增加较快,在大于1. 25 m之后趋于稳定;层间拉应力随离缝长度的增加在离缝长度小于1. 00 m时基本呈线性增加趋势,在大于1. 00 m之后增加趋势变缓;层间拉应力随离缝开口量的增加而线性增加。建议加强富水地段排水措施,对长度大于1. 40 m、深度大于1. 25 m和开口量大于1. 60 mm的离缝及时进行注浆修复,以减小层间离缝的进一步扩展及层间伤损。  相似文献   

14.
基于高速铁路路基工后沉降产生于地基沉降变形的机理及无砟轨道各结构层间关系的处理,研究高速铁路无砟轨道—路基变形计算模型。以双块式无砟轨道为例,以下部边界分别为地基面和路基面,道床板与支承层间的关系分别按层间接触和层间结合良好考虑,构建不同条件下的无砟轨道—路基变形计算模型。采用ABAQUS软件进行模型的计算,结果表明,下部边界为地基面和层间关系按接触考虑的计算模型能够反映轨道长波不平顺产生于路基变形的机理,计算结果符合双块式无砟轨道实际的结构特点和受力特征;而下部边界为路基面和按层间结合良好构建的无砟轨道—路基变形计算模型,由于支承层直接承受输入的"强制性"变形荷载,改变了无砟轨道适应路基变形的协调关系,从而导致路基变形引起的无砟轨道层间离缝及支承层产生的拉应力计算值过大,不符合双块式无砟轨道的结构设计原理。由此验证了下部边界为地基面及无砟轨道各结构层按层间接触构建无砟轨道—路基变形计算模型的合理性和可靠性。  相似文献   

15.
轨道板与水泥乳化沥青砂浆离缝是CRTSⅡ型板式无砟轨道的主要伤损形式之一,水泥乳化沥青砂浆具有支承、缓冲、传载等作用,离缝将影响无砟轨道的变形与受力。基于弹性地基梁体理论和有限元方法,建立了路基上CRTSⅡ型板式无砟轨道有限元模型,分析在温度荷载和自重作用下不同离缝长度以及产生离缝后CA砂浆层参数对轨道结构的影响。结果表明:轨道板的翘曲位移及纵向应力均随着离缝长度增大而增加;当离缝长度超过1.95 m时,轨道板的翘曲变形及纵向应力都急剧增大,建议轨道板与CA砂浆层离缝长度不宜超过1.95 m。  相似文献   

16.
为研究运营多年后高速铁路无砟轨道路基振动特性,对沪宁城际高铁路基段进行了现场实车测试。结果表明:板端位置,无砟轨道路基各结构层振动加速度值沿垂向快速衰减,呈指数趋势;板中位置,无砟轨道路基各结构层振动加速度值沿垂向平缓衰减,呈大致线性趋势。路基面和路肩处振动加速度值在板端、板中位置均较为接近;板端特殊位置主要对轨道板和底座板的振动响应有放大效应,且列车速度对板端振动加速度的放大效应最为显著。无砟轨道路基结构中轨道板、底座板振动位移随列车运营速度的变化大致呈线性关系,而路基封闭层和路肩位置振动位移随车速提高变化趋势不明显,与京津、武广、郑西等高铁路基内侧所测动位移分布规律一致。  相似文献   

17.
无砟轨道结构缝位置的路基面动应力存在集中效应,是产生底座/支承层-路基离缝,进而引发路基翻浆的重要因素。针对CRTSⅢ型板式无砟轨道结构特点及层间接触条件,建立设有混凝土结构缝的轨道-路基空间有限元模型,分析转向架双轴荷载作用于无砟轨道结构连续、轨道板缝、底座缝三种位置下路基面列车荷载分布特征,结合现场实测数据,提出考虑结构缝影响的路基面简化荷载模式。研究表明:路基面列车荷载纵向分布范围与混凝土层间接触条件相关,随摩擦系数增加呈非线性增大趋势,实测摩擦系数对应的纵向计算长度与测试值吻合;结构缝对路基面列车荷载沿纵向分布形态有显著影响,转向架双轴荷载作用于底座结构缝正上方为最不利位置,路基面应力分布模式由连续结构位置的梯形转化为应力较为集中的三角形;底座缝断面的基床应力大于结构连续位置,应力增幅由路基面的33%随深度逐渐衰减至基床底面的8%。  相似文献   

18.
运营期间的CRTS Ⅱ型板式无砟轨道在温度梯度荷载不断的作用下,轨道板与砂浆层之间会脱粘开裂,出现离缝,是无砟道床伤损形式之一。选择华东地区一高速铁路路基段设置测试工点,对轨道结构温度梯度及气温进行监测,并计算轨道板温度梯度极值。计算结果表明,测试期间出现的最大正温度梯度超过设计规定值。基于此,采用有限元方法建模并计算分析温度梯度荷载作用下轨道板与砂浆层间离缝的特征。结果表明,90℃/m正温度梯度荷载作用下,离缝由板端开始产生,并随温度梯度增大逐渐向板中心区域扩展。这与现场调研情况吻合。华东地区高速铁路线路高温季节出现过大的正温度梯度是轨道板与砂浆层间离缝产生和发展的主要原因之一。  相似文献   

19.
为探讨温度荷载作用下既有离缝无砟轨道结构层间损伤发展规律及上拱变形对轨道结构力学特性的影响,基于有限单元法和界面损伤内聚力模型,建立CRTSⅡ型板式无砟轨道有限元模型.计算结果表明:温度梯度荷载作用下,层间损伤萌生于离缝区与黏结区衔接处板角位置,并随温度梯度的持续增大斜向发展;黏结区损伤横向贯通后,轨道板竖向位移存在明...  相似文献   

20.
研究目的:针对土路基上无砟轨道的特点,采用有限元分析理论,建立土路基上板式无砟轨道结构的有限元分析模型,对土路基上板式轨道结构的合理型式进行研究,并分析底座尺寸改变对土路基上轨道结构力学性能的影响,以期研究结论可为土路基上无砟轨道结构的铺设及相关设计研究提供参考。研究结论:(1)相比实体板,框架板可有效减小轨道板在荷载作用下的应力和位移,其中最大拉应力减小约16%,最大位移减小约11%,同时自重减轻约30%,在土路基上铺设框架型轨道结构具有较高的技术经济性;(2)框架板式轨道结构的受力受底座厚度的影响更明显,受底座宽度的影响甚微;(3)底座尺寸的改变不影响框架型轨道板的应力分布规律;(4)土路基上框架型板式无砟轨道结构建议底座宽度取值为300~320 cm,厚度则取为30 cm左右,且不必为减小结构的受力而刻意的增大底座尺寸;(5)该研究成果可为无砟轨道的设计、维修更换提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号