首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Compared with internal combustion engine (ICE) vehicles, four-wheel-independently-drive electric vehicles (FWID EV) have significant advantages, such as more controlled degree of freedom (DOF), higher energy efficiency and faster torque response of an electric motor. The influence of these advantages and other characteristics on vehicle dynamics control need to be evaluated in detail. This paper firstly analyzed the dynamics characteristics of FWID EV, including the feasible region of vehicle global force, the improvement of powertrain energy efficiency and the time-delays of electric motor torque in the direct yaw moment feedback control system. In this way, the influence of electric motor output power limit, road friction coefficient and the wheel torque response on the stability control, as well as the impact of motor idle loss on the torque distribution method were illustrated clearly. Then a vehicle dynamics control method based on the vehicle stability state was proposed. In normal driving condition, the powertrain energy efficiency can be improved by torque distribution between front and rear wheels. In extreme driving condition, the electric motors combined with the electro-hydraulic braking system were employed as actuators for direct yaw moment control. Simulation results show that dynamics control which take full advantages of the more controlled freedom and the motor torque response characteristics improve the vehicle stability better than the control based on the hydraulic braking system of conventional vehicle. Furthermore, some road tests in a real vehicle were conducted to evaluate the performance of proposed control method.  相似文献   

2.
电动汽车以电动机代替内燃机,噪声低、无污染,使用单一的电能源,而电能来源广泛。作为21世纪主要绿色交通工具的电动汽车,电动汽车技术是当前国际上正在进行研究的一项高新技术。以分析电动汽车开发的关键技术,如电池技术、电力驱动及其控制技术、能量管理技术为切入点,为从事电动汽车行业的技术人员,提出研究方向。  相似文献   

3.
The plug-in hybrid electric vehicle (PHEV) has various driving modes used in both internal combustion engine and electric motors. The EV mode uses only an electric motor and the HEV mode uses both an engine and an electric motor. Specifically, when the PHEV of a pre-transmission parallel hybrid structure performs mode changing, its engine clutch is either engaged or disengaged, which is important in terms of ride comfort. In this paper, to enhance the mode changing process for the clutch engagement, a PHEV performance simulator is developed using MATLAB/Simulink based on system dynamics and experiment data. Vehicle driving analysis is carried out of the control logic and properties of the mode changing. A compensated torque is applied during the mode change. This results in the rapid speed synchronization with the clutch although the trade-off relationship of the mode change. In addition, the mode changing is conducted through the transmission shifting process to rapidly synchronize with speed. The control strategy implemented in this study is shown to improve the drivability and energy efficiency of a PHEV.  相似文献   

4.
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.  相似文献   

5.
An electrically assisted internal combustion engine is obtained by combining a conventional engine and one or more electrical motors of considerably smaller size. A key feature of such an innovative vehicle hybridization approach is that the torque generated by electric machines is not transmitted to the wheels. The electric motors are, in fact, intended only to assist the internal combustion engine in low efficiency, low performance, or high polluting working conditions. They however, draw extra power and energy from the battery. This paper presents a tool to evaluate different possible solutions in terms of energy balance, efficiency, battery stress and battery ageing. The method, which is based on suitable mathematical models and specific analysis criteria is also exploited to compare eight different configurations of a C-segment vehicle, pointing out limits and capabilities of traditional 12?14 V systems.  相似文献   

6.
In this two-part paper, a topological analysis of powertrains for refuse-collecting vehicles (RCVs) based on the simulation of different architectures (internal combustion engine, hybrid electric, and hybrid hydraulic) on real routes is proposed. In this first part, a characterization of a standard route is performed, analyzing the average power consumption and the most frequent working points of an internal combustion engine (ICE) in real routes. This information is used to define alternative powertrain architectures. A hybrid hydraulic powertrain architecture is proposed and modelled. The proposed powertrain model is executed using two different control algorithms, with and without predictive strategies, with data obtained from real routes. A calculation engine (an algorithm which runs the vehicle models on real routes), is presented and used for simulations. This calculation engine has been specifically designed to analyze if the different alternative powertrain delivers the same performance of the original ICE. Finally, the overall performance of the different architectures and control strategies are summarized into a fuel and energy consumption table, which will be used in the second part of this paper to compare with the different architectures based on hybrid electric powertrain. The overall performance of the different architectures indicates that the use of a hybrid hydraulic powertrain with simple control laws can reduce the fuel consumption up to a 14 %.  相似文献   

7.
姚明亮  秦大同  胡明辉  叶心 《汽车工程》2007,29(11):934-937,941
以燃油经济性和排放性能为主要控制目标,提出一种基于模糊逻辑的能量分配控制策略,应用ADVISOR仿真软件,对制定的控制策略在不同的道路循环工况下进行仿真。仿真结果表明,所设计的模糊逻辑控制策略能够合理分配发动机和电机的转矩,可使发动机工作在效率较高、排放较低的中等负荷区,整车的燃油经济性较好、排放较低。  相似文献   

8.
对传统清扫车的工作原理以及整车各工作部分的功率需求进行了分析,提出了一种新型的油电混合动力清扫车整车设计方案。依据该方案的整车控制系统结构,制定出混合动力清扫车油门踏板控制策略、驱动电机扭矩控制策略、发动机转速闭环控制策略以及高压电控制策略,以满足整车功能需求。  相似文献   

9.
为了优化等效燃油最小能量管理策略的节油效果,以适用于工程批量应用为导向,制定基于增益功率燃油系数的混合动力汽车(HEV)能量管理策略。基于瞬时优化原理,提出基于增益功率燃油系数的工作模式决策机制,根据电机发电或电动引起的发动机功率与燃油消耗率的变化关系,分别给出电机充电和放电模式下增益功率燃油系数的计算方法。考虑发动机扭矩瞬态快速变化对油耗的影响和电机及电池包充放电效率特性,提出发动机高效区域扭矩滞回控制方法,建立基于增益功率燃油系数的能量管理策略算法架构。基于MATLAB/Simulink搭建控制策略软件模型,通过转鼓试验台进行实车试验验证。研究结果表明:相对于等效燃油最小能量管理策略,基于增益功率燃油系数的能量管理策略提升了节油率和舒适性,在全球轻型汽车测试循环(WLTC)工况下的百公里油耗降低了约4.8%,发动机的启停次数降低了约53%;相对于有效燃油消耗率(BSFC)最优工作点控制方法,发动机高效区域滞回控制方法降低百公里油耗约1.8%;与采用基于动态规划的全局优化能量管理策略的仿真结果对比,在不能提前预知工况的条件下,制定的能量管理策略在WLTC工况与新标欧洲测试循环(NEDC)工况下的油耗与理论最优值差距均较小。  相似文献   

10.
A motor control strategy for an input-split hybrid electric vehicle (HEV) is proposed. From a power characteristic analysis, it is found that the powertrain efficiency decreases for speed ratios at which power circulation occurs. Using dynamic models of an input-split HEV powertrain, a motor-generator control algorithm for obtaining high system efficiency is designed by inversion-based control. The performance of the control algorithm is evaluated by the simulator which is developed based on PSAT, and simulation results are compared with the test results. It is found that, even if the engine thermal efficiency is sacrificed by moving the engine operation point from the OOL for the control strategy, improved overall powertrain system efficiency can be achieved by the engine operation that gives a relatively high efficiency from the viewpoint of the overall powertrain efficiency. The control algorithm developed can be used in design of future electric vehicles.  相似文献   

11.
针对目前混合动力汽车结构的优缺点及发展现状,提出一种双电机双离合器混合动力结构,在该结构下可实现多种驱动形式,综合各模式优势,可充分利用发动机、电机及电池特性,尽可能地节省能耗.在该混动结构下搭建了基于逻辑门限值和基于ECMS的瞬时优化能量管理策略,仿真及试验分析表明,基于ECMS的瞬时优化能量管理策略与基于规则的策略...  相似文献   

12.
Both environment protection and energy saving have attracted more and more attention in the electric vehicles (EVs) field. In fact, regarding control performance, electric motor has more advantages over conventional internal combustion engine. To decouple the interaction force between vehicle and various coordinating and integrating active control subsystems and estimate the real-time friction force for Advanced Emergency Braking System (AEBS), this paper’s primary intention is uniform distribution of longitudinal tire-road friction force and control strategy for a Novel Anti-lock Braking System (Nov- ABS) which is designed to estimate and track not only any tire-road friction force, but the maximum tire-road friction force, based on the Anti-Lock Braking System (ABS). The longitudinal tire-road friction force is computed through real-time measurement of breaking force and angular acceleration of wheels. The Magic Formula Tire Model can be expressed by the reference model. The evolution of the tire-road friction is described by the constrained active-set SQP algorithm with regard to wheel slip, and as a result, it is feasible to identify the key parameters of the Magic Formula Tire Model. Accordingly, Inverse Quadratic Interpolation method is a proper way to estimate the desired wheel slip in regards to the reference of tireroad friction force from the top layer. Then, this paper adapts the Nonlinear Sliding Mode Control method to construct proposed Nov-ABS. According to the simulation results, the objective control strategy turns out to be feasible and satisfactory.  相似文献   

13.
在分析单电机和双电机混合动力电动车发动机怠速充电工况下电池能量稳定性控制要求的基础上,提出了一种怠速充电工况电池SOC平衡的主动控制策略,并给出相应控制过程的能量控制目标值计算公式和相应的分析。通过对所提出的怠速充电工况电池SOC平衡控制策略进行仿真和实车测试,结果表明,该控制策略能有效控制电池SOC平衡,怠速充电过程中电池主动能量的过充和过放控制的稳定性也得到改善。  相似文献   

14.
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.  相似文献   

15.
In this two-part paper, a topological analysis of powertrains for refuse-collecting vehicles (RCVs) based on simulation of different architectures (internal combustion engine, hybrid electric, and hybrid hydraulic) on real routes is proposed. In this second part, three different hybrid electric powertrain architectures are proposed and modeled. These architectures are based on the use of fuel cells, ultracapacitors, and batteries. A calculation engine, which is specifically designed to estimate energy consumption, respecting the original performance as the original internal combustion engine (ICE), is presented and used for simulations and component sizing. Finally, the overall performance of the different architectures (hybrid hydraulic, taken from the first paper part, and hybrid electric, estimated in this second part) and control strategies are summarized in a fuel and energy consumption table. Based on this table, an analysis of the different architecture performance results is carried out. From this analysis, a technological evolution of these vehicles in the medium- and long terms is proposed.  相似文献   

16.
针对某新型双电机行星耦合插电式混合动力汽车(PHEV)中发动机在起停及怠速运行状态下会导致油耗增加的问题,基于等效燃油消耗最小能量管理策略,加入发动机起停优化控制模块,以进一步改善整车燃油经济性。建立了整车动力学和传动模型并加入发动机起停优化控制模块,对ECMS能量管理策略输出的发动机及电机最优目标转矩进行重新优化分配后,再输出给发动机及电机控制器以控制其工作状态。针对起停优化控制中影响起停频次的关键时间参数,采用粒子群优化算法对其进行优化。仿真结果表明,相比优化前,所提出的能量管理优化策略能够实现对发动机起停或怠速状态的有效控制,减少发动机的起停频次,减少恶化油耗,验证了本文所提出的能量管理优化策略能够进一步优化整车燃油经济性。  相似文献   

17.
为减小或消除单电机式强混合动力电动车辆在纯电动模式与发动机驱动模式间切换时产生的动力系统冲击,提出了发动机起动过程的转矩协调控制策略和发动机退出过程的转矩补偿控制策略.转矩协调控制策略包括起动模式下的发动机起动阻力转矩补偿控制和调节模式下的发动机过冲转矩平衡控制,转矩补偿控制策略利用电机补偿发动机退出过程中动力系统转矩的变化.台架和实车试验结果表明了该动态协调控制策略可确保发动机的快速平稳起动和发动机退出时不产生动力系统冲击.  相似文献   

18.
针对串联、并联和混联3种类型的混合动力汽车驱动系统的不同结构特点,文章对3种类型混合动力汽车的能量控制策略分别进行了详细阐述,指出了未来混合动力汽车能量控制策略研究的发展方向。能量控制策略不仅要实现整车最佳的燃油经济性,而且还要兼顾发动机排放、蓄电池寿命及驾驶性能等多方面要求,并针对混合动力汽车各部件的特性和汽车的运行工况,使发动机、电动机、蓄电池和传动系统实现最佳匹配,兼顾上述各方面要求的优化控制策略的研究应是今后的研究重点。  相似文献   

19.
在传统ISG型混合动力系统的发动机和电机之间增加一个自动离合器,将其定义为节能离合器。针对该ISG型混合动力系统中节能离合器接合问题,进行了节能离合器控制策略研究,并对离合器接合过程进行了动力学分析,建立了离合器控制仿真模型。分析了离合器接合量和接合速度随离合器主、从动盘转速变化的关系。  相似文献   

20.
为了优化轻度混合控制策略下的CFA6470混合动力电动汽车能量总成控制系统,设计了能量总成控制器,并将其分成5个模块;分析了节气门开启角与车辆行驶挡位的优化方法,轻度混合时的能量分配策略;提出了基于能量守恒原理的电池组荷电状态估计方法,并根据ECE-EUDC工况,在2种不同的期望车速下对设计的控制系统进行了仿真。仿真结果表明:在发动机的期望工况下,所设计的能量总成控制系统能够实现能量在发动机、驱动电机以及电池组之间的合理分配,电池组的荷电状态变化规律与车辆行驶状态相符合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号