首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study reports the identification of linear handling models for road vehicles starting from structural identifiability analysis, continuing with the experiments to acquire data on a vehicle equipped with a sensor set and data acquisition system, and ending with the estimation of parameters using the collected data. The model structure originates from the well-known linear bicycle model that is frequently used in handling analysis of road vehicles. Physical parameters of the bicycle model structure are selected as the unknown parameter set that is to be identified. Global identifiability of the model structure is analysed, in detail, and concluded according to various available sensor sets. Physical parameters of the bicycle model structure are estimated using prediction error estimation method. Genetic algorithms are used in the optimisation phase of the identification algorithm to overcome the difficulty in the selection of initial values for parameter estimates. Validation analysis of the identified model is also presented. The identified model is shown to track the system response successfully.  相似文献   

2.
A rigid body model to represent a side impact crash is constructed using five degrees-of-freedom (dof) for the vehicle and three dof for each occupant in the vehicle. Nonlinear stiffness and damping elements and the presence of physical gaps between several components make the model highly nonlinear. The model is validated using experimental crash test data from a National Highway Traffic Safety Administration (NHTSA) database. To simplify the parameter identification process and reduce the number of parameters to be identified at each stage, a two-step process is adopted in which the vehicle is first assumed to be unaffected by the presence of the occupants, and its model parameters are identified. Subsequently, the parameters in the occupant models are identified.

The active set method with a performance index that includes both the L2 and L norms is used for parameter identification. A challenge is posed by the fact that the optimisation problem involved is non-convex. To overcome this challenge, a large set of random initial values of parameter estimates is generated and the optimisation method is applied with all these initial conditions. The values of parameters that provide the minimal performance index from the entire set of initial conditions are then chosen as the best parameter values. The optimal parameters values thus identified are shown to significantly improve the match between the model responses and the experimentally measured sensor signals from the NHTSA crash test.  相似文献   

3.
Bogie suspension system of high speed trains can significantly affect vehicle performance. Multiobjective optimisation problems are often formulated and solved to find the Pareto optimised values of the suspension components and improve cost efficiency in railway operations from different perspectives. Uncertainties in the design parameters of suspension system can negatively influence the dynamics behaviour of railway vehicles. In this regard, robustness analysis of a bogie dynamics response with respect to uncertainties in the suspension design parameters is considered. A one-car railway vehicle model with 50 degrees of freedom and wear/comfort Pareto optimised values of bogie suspension components is chosen for the analysis. Longitudinal and lateral primary stiffnesses, longitudinal and vertical secondary stiffnesses, as well as yaw damping are considered as five design parameters. The effects of parameter uncertainties on wear, ride comfort, track shift force, stability, and risk of derailment are studied by varying the design parameters around their respective Pareto optimised values according to a lognormal distribution with different coefficient of variations (COVs). The robustness analysis is carried out based on the maximum entropy concept. The multiplicative dimensional reduction method is utilised to simplify the calculation of fractional moments and improve the computational efficiency. The results showed that the dynamics response of the vehicle with wear/comfort Pareto optimised values of bogie suspension is robust against uncertainties in the design parameters and the probability of failure is small for parameter uncertainties with COV up to 0.1.  相似文献   

4.
Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.  相似文献   

5.
The purpose of this paper is to determine the lumped suspension parameters that minimise a multi-objective function in a vehicle model under different standard PSD road profiles. This optimisation tries to meet the rms vertical acceleration weighted limits for human sensitivity curves from ISO 2631 [ISO-2631: guide for evaluation of human exposure to whole-body vibration. Europe; 1997] at the driver's seat, the road holding capability and the suspension working space. The vehicle is modelled in the frequency domain using eight degrees of freedom under a random road profile. The particle swarm optimisation and sequential quadratic programming algorithms are used to obtain the suspension optimal parameters in different road profile and vehicle velocity conditions. A sensitivity analysis is performed using the obtained results and, in Class G road profile, the seat damping has the major influence on the minimisation of the multi-objective function. The influence of vehicle parameters in vibration attenuation is analysed and it is concluded that the front suspension stiffness should be less stiff than the rear ones when the driver's seat relative position is located forward the centre of gravity of the car body. Graphs and tables for the behaviour of suspension parameters related to road classes, used algorithms and velocities are presented to illustrate the results. In Class A road profile it was possible to find optimal parameters within the boundaries of the design variables that resulted in acceptable values for the comfort, road holding and suspension working space.  相似文献   

6.
The validation of vehicle mathematical models is a key part of the virtual acceptance process since it is essential to ensure a precise representation of the reality. The model validation procedure should include validation of stationary but also dynamic tests. However, parameter identification from on-track tests is a challenging task due to the non-controlled excitation and the great variability of the test results. Thus, an alternative solution by means of a vehicle modal analysis is proposed, developing a parameter identification methodology for dynamic vehicle model parameters. This methodology calculates estimated values of the vehicle model parameters that have an influence on the excited vehicle vibration modes. Moreover, a new criterion for taking into account the effect of the measurement uncertainties on the selection process of the vehicle parameters is developed. Finally, experimental results show that not only estimations of the suspension stiffness parameters can be obtained, but damping values and structural frequencies from the vehicle bodies can also be estimated.  相似文献   

7.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

8.
Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are optimal for the track, the maximum operational velocity is increased while the safety and ride quality measures of the vehicle, as defined by homologation standards, are either maintained in acceptable values or improved.  相似文献   

9.
This paper proposes an approach for the validation of railway vehicle models based on on-track measurements. The validation of simulation models has gained importance with the introduction of new applications of multi-body simulation in railway vehicle dynamics as the assessment of track geometry defects, the investigation of derailments and the analysis of gauging. These applications are not only interested in qualitative predictions of the vehicle behaviour but also in precise quantitative results of the safety and comfort relevant vehicle responses. The validation process aims at guaranteeing that the simulation model represents the dynamic behaviour of the real vehicle with a sufficient good precision. A misfit function is defined which quantifies the distance between the simulated and the measured vehicle response allowing to evaluate different models at different running conditions. The obtained modelling errors are compared to the measurement uncertainty estimated for one vehicle using repeatability analysis.  相似文献   

10.
To improve safety and maximum admissible speed on different operational scenarios, multiobjective optimisation of bogie suspension components of a one-car railway vehicle model is considered. The vehicle model has 50 degrees of freedom and is developed in multibody dynamics software SIMPACK. Track shift force, running stability, and risk of derailment are selected as safety objective functions. The improved maximum admissible speeds of the vehicle on curves are determined based on the track plane accelerations up to 1.5?m/s2. To attenuate the number of design parameters for optimisation and improve the computational efficiency, a global sensitivity analysis is accomplished using the multiplicative dimensional reduction method (M-DRM). A multistep optimisation routine based on genetic algorithm (GA) and MATLAB/SIMPACK co-simulation is executed at three levels. The bogie conventional secondary and primary suspension components are chosen as the design parameters in the first two steps, respectively. In the last step semi-active suspension is in focus. The input electrical current to magnetorheological yaw dampers is optimised to guarantee an appropriate safety level. Semi-active controllers are also applied and the respective effects on bogie dynamics are explored. The safety Pareto optimised results are compared with those associated with in-service values. The global sensitivity analysis and multistep approach significantly reduced the number of design parameters and improved the computational efficiency of the optimisation. Furthermore, using the optimised values of design parameters give the possibility to run the vehicle up to 13% faster on curves while a satisfactory safety level is guaranteed. The results obtained can be used in Pareto optimisation and active bogie suspension design problems.  相似文献   

11.
This paper presents a novel modified particle swarm optimisation (MPSO) algorithm to identify nonlinear systems. The case of study is a hydraulic suspension system with a complicated nonlinear model. One of the main goals of system identification is to design a model-based controller such as a nonlinear controller using the feedback linearisation. Once the model is identified, the found parameters may be used to design or tune the controller. We introduce a novel mutation mechanism to enhance the global search ability and increase the convergence speed. The MPSO is used to find the optimum values of parameters by minimising the fitness function. The performance of MPSO is compared with genetic algorithm and alternative particle swarm optimisation algorithms in parameter identification. The presented comparisons confirm the superiority of MPSO algorithm in terms of the convergence speed and the accuracy without the premature convergence problem. Furthermore, MPSO is improved to detect any changes of system parameters, which can be used for designing an adaptive controller. Simulation results show the success of the proposed algorithm in tracking time-varying parameters.  相似文献   

12.
Pareto optimisation of bogie suspension components is considered for a 50 degrees of freedom railway vehicle model to reduce wheel/rail contact wear and improve passenger ride comfort. Several operational scenarios including tracks with different curve radii ranging from very small radii up to straight tracks are considered for the analysis. In each case, the maximum admissible speed is applied to the vehicle. Design parameters are categorised into two levels and the wear/comfort Pareto optimisation is accordingly accomplished in a multistep manner to improve the computational efficiency. The genetic algorithm (GA) is employed to perform the multi-objective optimisation. Two suspension system configurations are considered, a symmetric and an asymmetric in which the primary or secondary suspension elements on the right- and left-hand sides of the vehicle are not the same. It is shown that the vehicle performance on curves can be significantly improved using the asymmetric suspension configuration. The Pareto-optimised values of the design parameters achieved here guarantee wear reduction and comfort improvement for railway vehicles and can also be utilised in developing the reference vehicle models for design of bogie active suspension systems.  相似文献   

13.
A model-based condition monitoring strategy for the railway vehicle suspension is proposed in this paper. This approach is based on recursive least square (RLS) algorithm focusing on the deterministic ‘input–output’ model. RLS has Kalman filtering feature and is able to identify the unknown parameters from a noisy dynamic system by memorising the correlation properties of variables. The identification of suspension parameter is achieved by machine learning of the relationship between excitation and response in a vehicle dynamic system. A fault detection method for the vertical primary suspension is illustrated as an instance of this condition monitoring scheme. Simulation results from the rail vehicle dynamics software ‘ADTreS’ are utilised as ‘virtual measurements’ considering a trailer car of Italian ETR500 high-speed train. The field test data from an E464 locomotive are also employed to validate the feasibility of this strategy for the real application. Results of the parameter identification performed indicate that estimated suspension parameters are consistent or approximate with the reference values. These results provide the supporting evidence that this fault diagnosis technique is capable of paving the way for the future vehicle condition monitoring system.  相似文献   

14.
交通参数实时获取是道路交通管控的重要基础。针对固定检测器观测范围受限和浮动车数量需求大的问题,研究了1种利用车载ADAS联网数据进行路段交通参数估算的方法。通过分析车载ADAS感知的前向目标参数与交通参数的关系,结合广义交通量定义,并考虑多车道条件下ADAS车辆及其邻近前车的相对运动变化特性,建立了1种非稳态交通条件下的交通参数估算模型。在仿真实验环境下获得定参数据集和验证数据集,完成对模型的参数标定和验证,并探讨时空分辨率和ADAS车辆渗透率对模型估算精度的影响规律。基于实验数据分析,结果表明,时间分辨率降低5 min,所提模型估算误差平均减小3.4%,降低时间分辨率可以提升所提模型的估算精度;空间分辨率降低500 m,流量和密度的估算误差平均减小1.68%,却可能导致速度估算误差平均增加5.19%;ADAS车辆渗透率的增长可以增强估算交通参数和观测交通参数在路段时空区域的契合程度。在ADAS逐渐装车应用的背景下,所提的交通参数估算模型可快速、精准获取路段连续时空范围内的交通量信息。   相似文献   

15.
A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.  相似文献   

16.
A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.  相似文献   

17.
For the complex structure and vibration characteristics of coupling driver-seat-cab system of trucks, there is no damping optimisation theory for its suspensions at present, which seriously restricts the improvement of vehicle ride comfort. Thus, in this paper, the seat suspension was regarded as ‘the fifth suspension’ of cab, the ‘Five-suspensions’ for this system was proposed. Based on this, using the mechanism modelling method, a 4 degree-of-freedom coupling driver-seat-cab system model was presented; then, by the tested cab suspensions excitation and seat acceleration response, its parameters identification mathematical model was established. Based on this, taking optimal ride comfort as target, its damping collaborative optimisation mathematical model was built. Combining the tested signals and a simulation model with the mathematical models of parameters identification and damping collaborative optimisation, a complete flow of hybrid modelling and damping collaborative optimisation of Five-suspensions was presented. With a practical example of seat and cab system, the damping parameters were optimised and validated by simulation and bench test. The results show that the model and method proposed are correct and reliable, providing a valuable reference for the design of seat suspension and cab suspensions.  相似文献   

18.
ABSTRACT

Accurate identification of vehicle inertial parameters is essential to the design of vehicle dynamics control systems. In this paper, a novel vehicle inertial parameter identification method based on the dual H infinity filter (DHIF) for electric vehicles (EVs) is proposed. The filter algorithm employs a nonlinear longitudinal vehicle model with three vehicle states. A hierarchical framework is engaged by the DHIF to estimate the vehicle states and inertial parameters concurrently. In order to minimise the disturbance of unknown noise, the vehicle states are estimated by using the linear H infinity filter (LHIF), while the nonlinear H infinity filter (NHIF) utilises the observed states to identify the vehicle inertial parameters. Finally, the proposed estimation method is verified and compared through the dSPACE based hardware-in-the-loop (HIL) simulation experiments. The results indicate that the DHIF-based estimation method is effective to identify the vehicle inertial parameters with high precision, remarkable robustness, and quick convergence.  相似文献   

19.
Optimum values are selected for the suspension damping and stiffness parameters of complex car models, subjected to road excitation, by applying suitable numerical methodologies. These models result from a detailed finite-element discretisation and possess a relatively large number of degrees of freedom. They also involve strongly nonlinear characteristics, due mostly to large rigid body rotation of some of their components and the properties of the connection elements. First, attention is focused on gaining some insight into the dynamics of the mechanical models examined, resulting when the vehicle passes over roads involving typical geometric profiles. Then, the emphasis is shifted to presenting results obtained by applying appropriate optimisation methodologies. For this purpose, three classes of design criteria are first set up, referring to passenger ride comfort, suspension travel and car road holding and yielding the most important suspension stiffness and damping parameters. Originally, the optimisation is performed by forming a composite cost function and employing a single-objective optimisation method. Since the design criteria are conflicting, a multi-objective optimisation methodology is also set up and applied subsequently.  相似文献   

20.
利用探测车数据进行路段行程时间估计面临着两类误差:采样误差和非采样误差,从而导致估计结果精度不高和可靠性差。在回顾已有估计方法的基础上,有针对性地引入了自适应式卡尔曼滤波,建立了相应的状态方程和观测方程,利用相似时间特征的历史数据标定了状态转移系数,并对滤波进行了求解。以实际数据对估计方法进行了验证,平均相对误差为13.13%。研究表明,自适应式卡尔曼滤波能够应用到基于探测车数据的路段行程时间估计中来,并具有估计精度高、收敛速度快、参数少、对初值不敏感等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号