首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In railway turnout, the stock rail and switch rail are separated to enable the vehicle changing among the tracks, and they are provided with different rail resilience level on the baseplate. Therefore, there will be vertical relative motion between stock/switch rails under the wheel loads, and the relative motion will affect consequentially the wheel–rail contact conditions. A method is developed to investigate the effect of the relative motion of stock/switch rails on the load transfer distribution along the switch panel in high-speed railway turnout. First, the rigid wheel–rail contact points of stock/switch rails are calculated based on the trace line method, and then the contact status is determined by the presented equations, finally, the distribution of wheel–rail contact forces of stock/switch rails is obtained based on the continuity of interface displacements and forces which using an approximate surface deformation method. Some parametric studies have been performed, such as the lateral displacement of wheel set, the vertical contact forces, the wheel profiles and the vertical stiffness of rail pad. The results of the parametric study are presented and discussed.  相似文献   

2.
3.
为研究运动车辆气动力的展向相关性对桥上运动车辆响应的影响,在分析运动车辆顺风向和竖向脉动风速谱的基础上,发展出一种新型的运动车辆脉动风速相干函数形式,推导出与顺风向和竖向脉动风速对应的运动车辆气动力的展向相关性传递函数,并根据“余弦规则”得到作用在运动车辆上的抖振力谱。通过建立列车-轨道-桥梁多体系统耦合振动仿真模型,以单节列车在典型的高速铁路桥梁上行驶为例,对比不同车速、不同风速与不同地表类型时,运动车辆气动力的传递函数对桥上运动车辆响应的影响。研究结果表明:当考虑上述传递函数时,车辆响应的均方根均有不同程度的降低,其中对车体横向和竖向加速度均方根的影响最为显著;当车速为40 m·s-1时,在考虑与不考虑传递函数情况下,车体横向加速度均方根的相对误差高达40.6%,车体竖向加速度均方根的相对误差也高达36.6%;随着车速的提高,各车辆响应均方根的相对误差均逐渐变小;随着风速的提高,轮重减载率和轮轨垂向力均方根的相对误差均逐渐变大,而车体竖向Sperling指标和轮轨横向力均方根的相对误差却先增加后减小;从A类地表类型到D类地表类型,车体加速度均方根以及车体Sperling指标的相对误差均逐渐增大,而轮轨力均方根、脱轨系数均方根、轮重减载率均方根的相对误差均先增大后减小。  相似文献   

4.
Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel–load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.  相似文献   

5.
This paper describes a design of a real-time conversion system of wheel linear accelerations into tire lateral forces. Though the tire lateral forces are important elements for analyzing vehicle dynamic control performances, they cannot be easily measured in real-time owing to the non-linearities of tire dynamics, friction, and slippage on road. In this paper, we propose a practical direct method using wheel linear accelerations in order to estimate tire lateral forces transmitted into the vehicle in real-time. A simplified vehicle model based on force-acceleration analysis is proposed to assure the real-time performance. The acceleration values are obtained using three-axis accelerometers attached on each wheel location. For conditioning and rectifying the acceleration signals, a signal transducer is designed using a digital filter. And in order to investigate the feasibility and real-time performance, a prototype of signal transducer is fabricated using a digital signal processor. The experimental results and performance are validated with the road test results using six-component wheel force transducers.  相似文献   

6.
The goal of the present study is to show how it is possible to estimate online the individual torques applied at each wheel of an automotive vehicle by using an unknown input observer together with a simple nonlinear state-space model. The necessary measurements are the steering angle, the usual rotation speed of each wheel plus the vertical load at the centre of each wheel. By doing this, this study anticipates the affordability of a new generation of wheel bearing with embedded measurements of transmitted forces. Successful simulated experimentations using a realistic simulator are shown. Validations are done using classical case studies of longitudinal, lateral and coupled dynamics. The present limits and some possible improvements of the proposed method are also discussed.  相似文献   

7.
In order to investigate the effect of curved track support failure on railway vehicle derailment, a coupled vehicle–track dynamic model is put forward. In the model, the vehicle and the structure under rails are, respectively, modelled as a multi-body system, and the rail is modelled with a Timoshenko beam rested on the discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The model also considers the effect of the discrete support by sleepers on the coupling dynamics of the vehicle and track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the calculation of the coupled vehicle and track dynamics, the normal forces of the wheels/rails are calculated using the Hertzian contact theory and their creep forces are determined with the nonlinear creep theory by Shen et al [Z.Y. Shen, J.K. Hedrick, and J.A. Elkins, A comparison of alternative creep-force models for rail vehicle dynamic analysis, Proceedings of the 8th IAVSD Symposium, Cambridge, MA, 1984, pp. 591–605]. The motion equations of the vehicle/track are solved by means of an explicit integration method. The failure of the components of the curved track is simulated by changing the track stiffness and damping along the track. The cases where zero to six supports of the curved rails fail are considered. The transient derailment coefficients are calculated. They are, respectively, the ratio of the wheel/rail lateral force to the vertical force and the wheel load reduction. The contact points of the wheels/rails are in detail analysed and used to evaluate the risk of the vehicle derailment. Also, the present work investigates the effect of friction coefficient, axle load and vehicle speed on the derailments under the condition of track failure. The numerical results obtained indicate that the failure of track supports has a great influence on the whole vehicle running safety.  相似文献   

8.
A practical method to determine the zone of two contact points and the transfer of wheel–rail forces between two rails in a turnout is presented in this paper. The method is based on a wheel–rail elastic penetration assumption and used to study a turnout system for a 200 km/h high-speed railway in China. Rail profiles in a number of key sections in the turnout are identified first, and profiles in other sections are then obtained by interpolation between key sections. The track is modelled as flexible with rails and sleepers represented by beams and the interaction between the vehicle and turnout is simulated for cases of the vehicle passing the turnout. Results are mainly presented for two-point contact positions and the characteristics of the wheel–rail forces transference. It is found that the heights of the switch and crossing rail top have significant effects on the wheel–rail contact forces. Finally, the optimised top height for the crossing rails is proposed to reduce the system dynamic force in the turnout system.  相似文献   

9.
The major challenges for rollover detection are the accurate modelling of vehicle dynamics and the real-time estimation of the varied parameters. To circumvent the dependence on vehicle parameters, a novel rollover detection method based on the pulsed braking excitation is proposed. With the lateral load transfer ratio (LTR), the relationship between rollover risks and non-driven wheel rotational dynamics is deduced, which is the basis to apply braking excitation on wheels. The lateral acceleration is adopted as the first criterion to activate the rollover detection. Once the pulsed braking is applied to the non-driven wheels, the braking pressure and wheel angular speeds are measured to estimate the LTR on the non-driven axle. In case of emergency, the differential braking-based anti-rollover is implemented. Experiments were conducted on a Hardware-in-Loop bench. The results show that, the pulsed braking can be activated timely, and the LTR on the non-driven axle is estimated accurately. With the anti-rollover control, the roll stability is improved considerably.  相似文献   

10.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

11.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

12.
The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle–track interaction effectively due to its geometric deviations with a typical wavelength of 20–40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle–track structure and the wheel–rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel–rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.  相似文献   

13.
In this paper, three numerical algorithms for the identification of wheel–rail contact forces based on measured wheel disc strains on an instrumented railway wheelset are discussed and compared. The three algorithms include one approach resting on static calibration, one that is applying a Kalman filter and the third is exploiting an inverse identification scheme. To demonstrate and evaluate the alternative methods, two load cases including periodic excitation by sinusoidal wheel–rail irregularities and transient excitation by an insulated rail joint are considered. Based on a previously presented vehicle–track interaction model in the time domain, load scenarios are defined by taking the calculated vertical wheel–rail contact forces as the reference force to be re-identified by the proposed algorithms. The reference contact forces are applied on a finite element model of the wheel to generate synthetic observation data, that is, radial strains at the positions of the strain gauges, serving as input to the identification procedures. It is concluded that the inverse identification scheme leads to superior accuracy at higher computational cost. If on-line implementation and evaluation is required, the Kalman filter generates better accuracy than the static calibration approach.  相似文献   

14.
An inverse wagon model was developed to estimate wheel–rail contact forces using only measurements of wagon body responses as inputs. The purpose of this work was to provide mathematical modelling to embed in low-cost devices that can be mounted on each freight wagon in a large wagon fleet. To minimize cost, complication, and the maintenance inconvenience of these devices, the constraint is imposed that transducers and connections are limited to locations on the wagon body. Inputs to the inverse model developed include only vertical and lateral translational accelerations and angular accelerations of roll, pitch, and yaw of the wagon body. The model combines the integration and partial modal matrix (PMM) techniques together to form an IPMM method. Besides wheel–rail contact forces some motion quantities such as the lateral and yaw displacements of wheelset are also predicted. Results from the inverse model were compared with data from full scale laboratory suspension tests for vertical suspension excitations. The inverse model was also compared with results from simulations completed in VAMPIRE® for more complicated track input profiles. The model results and the applications of the model are discussed.  相似文献   

15.
A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability.  相似文献   

16.
A model for simulation of dynamic interaction between a railway vehicle and a turnout (switch and crossing, S&C) is validated versus field measurements. In particular, the implementation and accuracy of viscously damped track models with different complexities are assessed. The validation data come from full-scale field measurements of dynamic track stiffness and wheel–rail contact forces in a demonstrator turnout that was installed as part of the INNOTRACK project with funding from the European Union Sixth Framework Programme. Vertical track stiffness at nominal wheel loads, in the frequency range up to 20?Hz, was measured using a rolling stiffness measurement vehicle (RSMV). Vertical and lateral wheel–rail contact forces were measured by an instrumented wheel set mounted in a freight car featuring Y25 bogies. The measurements were performed for traffic in both the through and diverging routes, and in the facing and trailing moves. The full set of test runs was repeated with different types of rail pad to investigate the influence of rail pad stiffness on track stiffness and contact forces. It is concluded that impact loads on the crossing can be reduced by using more resilient rail pads. To allow for vehicle dynamics simulations at low computational cost, the track models are discretised space-variant mass–spring–damper models that are moving with each wheel set of the vehicle model. Acceptable agreement between simulated and measured vertical contact forces at the crossing can be obtained when the standard GENSYS track model is extended with one ballast/subgrade mass under each rail. This model can be tuned to capture the large phase delay in dynamic track stiffness at low frequencies, as measured by the RSMV, while remaining sufficiently resilient at higher frequencies.  相似文献   

17.
Accurate lateral load transfer estimation plays an important role in improving the performance of the active rollover prevention system equipped in commercial vehicles. This estimation depends on the accurate prediction of roll angles for both the sprung and the unsprung subsystems. This paper proposes a novel computational method for roll-angle estimation in commercial vehicles employing sensors which are already used in a vehicle dynamic control system without additional expensive measurement units. The estimation strategy integrates two blocks. The first block contains a sliding-mode observer which is responsible for calculating the lateral tyre forces, while in the second block, the Kalman filter estimates the roll angles of the sprung mass and those of axles in the truck. The validation is conducted through MATLAB/TruckSim co-simulation. Based on the comparison between the estimated results and the simulation results from TruckSim, it can be concluded that the proposed estimation method has a promising tracking performance with low computational cost and high convergence speed. This approach enables a low-cost solution for the rollover prevention in commercial vehicles.  相似文献   

18.
In this paper, an analytical model with suitable vehicle parameters, together with a multi-body model is proposed to predict steering returnability in low-speed cornering with what is expected to be adequate precision as the steering wheel moves from lock to lock. This model shows how the steering response can be interpreted in terms of vertical force, lateral force with aligning moment, and longitudinal force. The simulation results show that vertical steering rack forces increase in the restoring direction according to steering rack displacement for both the inner and outer wheels. As lateral forces due to side-slip angle are directed toward the medial plane of the vehicle in both wheels, the outer wheel pushes the steering wheel in the returning direction while the inner wheel does not. In order to improve steering returnability, it is possible to increase the total steering rack force in both road wheels through adjustments to the kingpin axis and steering angle. This approach is useful for setting up a proper suspension geometry during conceptual chassis design.  相似文献   

19.
A new method is proposed for the solution of the vertical vehicle–track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel–rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel–rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel–rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle–track interaction including a separation between wheel and rail.  相似文献   

20.
A new approach is proposed for nonlinear asymptotic observers based on the cascade observer system with a fusion of sensor signals. In the observers, the characteristic of the vehicle dynamic system, the nonlinear tire force estimation, load transfer estimation, and road ramp angle compensation are considered. The errors in the observation of vehicle velocity were diminished, and the computation cost was decreased for a real-time microcontroller. Simulation and real vehicle test results validate the higher accuracy of the velocity estimation by the proposed observers under complicated handling maneuver conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号