首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Surface seawater samples were taken in the framework of the GEOTRACES program on “POLARSTERN” expedition ANT XXIII/1 in the Eastern Atlantic in 2005 to study the distribution of the trace elements Hg (mercury), Pb (lead), Cd (cadmium), Cu (copper), Ni (nickel), Zn (zinc), Co (cobalt), Mn (manganese), Fe (iron), and Al (aluminium). With the exception of Hg, results were compared to earlier datasets from 1989 to 1990. The particulate fraction averaged over the transect was calculated to be 49% for Cd, 23% for Mn and 50% for Fe indicating a release of these TEI's (trace elements and their isotopes) from a leachable SPM fraction in the stored and acidified samples.Total Pb concentrations ranged between 5 and 20 pmol kg? 1 in 2005 with highest values in the ITCZ (intertropical convergence zone). In 1989 Pb concentrations were twice as high in the region of the ITCZ, while by a factor of 10–15 higher values were obtained in the North Atlantic.Total Cd and Co are dominated, by different seasonal upwelling regimes (Equatorial upwelling, Guinea Dome, Angola Dome).Total Cu, Ni, Fe, Mn and Al show nearly identical concentrations in 1990 and 2005. For total manganese and aluminium strong maxima (3–4 nmol kg? 1 and 55 nmol kg? 1 respectively) are observed between 23°N and 0°, while the Fe maximum (6–9 nmol kg? 1) is located at 7°N. Total Hg concentrations ranged between 0.5 and 4.5 pmol kg? 1.  相似文献   

2.
This paper provides an in-depth study of residual stress distributions found in stiffened steel plate structures, such as those typically used in ship hulls. The effect of stiffener spacing on the distribution of residual stress components was studied. The welding heat input was also varied between high and moderate to study the effect of heat input level on residual stress distributions. Four specimens, resembling typical stiffened steel plate structures used in ship hulls were built and tested. Steel plates of 9.5 mm thickness were stiffened by welding L127 × 76 × 9.5 steel angles. The test was completed using the neutron diffraction method. The three normal components of residual stress were obtained in this study. It was found that a lower heat input results in higher tensile residual stress and that there exists a critical stiffener spacing somewhere beyond 250 mm that creates a maximum tensile residual stress value near the welded connection.  相似文献   

3.
High Reynolds number flows (Re = 1 × 106, 2 × 106 and 3.6 × 106, based on the free stream velocity and cylinder diameter) covering the supercritical to upper-transition flow regimes around a two-dimensional (2D) smooth circular cylinder, have been investigated numerically using 2D Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations with a standard high Reynolds number k ? ? turbulence model. The objective of the present study is to evaluate whether the model is applicable for engineering design within these flow regimes. The results are compared with published experimental data and numerical results. Although the k ? ? model is known to yield less accurate predictions of flows with strong anisotropic turbulence, satisfactory results for engineering design purposes are obtained for high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes, i.e. Re > 106. This is based on the comparison with published experimental data and numerical results.  相似文献   

4.
Experimental work carried out at 1:60 scale in a wave flume assessed the pitch motion and anchor loading of 3 articulated tower installations in 50 m water depth while being exposed to north Atlantic storms with Hs of 15.2 m and Tp of 18.4 s. The three installations differ only in that their mass and buoyancy characteristics provide a natural period in pitch at equilibrium of 13 s, 20 s and 34 s respectively. It is verified that the dominant behaviour can be simulated by a relatively simple mathematical model, allowing the critical parameters of peak anchor loads and pitch angles to be calculated and extrapolated to full scale. It is demonstrated from the experimental and simulation results that the mass characteristics of a non surface piercing tower can be used to offset some of the challenges of moving to shallow water. If done correctly, it is possible to keep horizontal anchor loads under control and reduce vortex-induced transverse loading at the expense of increased pitch motions. Overall, the use of articulated tower installations in water depths of 50 m would appear to be technically feasible, even in exposed areas. The limitations on the size of such structures and the consequences of the resulting pitch accelerations and induced anchor loads are the subject of further study. It is proposed that the model verified herein can be used to further assess their potential at delivering viable wave power position mooring systems.  相似文献   

5.
An empirical algorithm has been developed to compute the sea surface CO2 fugacity (fCO2sw) in the Bay of Biscay from remotely sensed sea surface temperature (SSTRS) and chlorophyll a (chl aRS) retrieved from AVHRR and SeaWiFS sensors, respectively. Underway fCO2sw measurements recorded during 2003 were correlated with SSTRS and chl aRS data yielding a regression error of 0.1 ± 7.5 µatm (mean ± standard deviation). The spatial and temporal variability of air–sea fCO2 gradient (ΔfCO2) and air–sea CO2 flux (FCO2) was analyzed using remotely sensed images from September 1997 to December 2004. An average FCO2 of ? 1.9 ± 0.1 mol m? 2 yr? 1 characterized the Bay of Biscay as a CO2 sink that is suffering a significant long-term decrease of 0.08 ± 0.05 mol m? 2 yr? 2 in its capacity to store atmospheric CO2. The main parameter controlling the long-term variability of the CO2 uptake from the atmosphere was the air–sea CO2 transfer velocity (57%), followed by the SSTRS (10%) and the chl aRS (2%).  相似文献   

6.
Surfical sediments within Corunna Lake, a moderate size Intermittently Closed and Open Lake Lagoon (ICOLL), were examined for solid phase nutrient concentrations (TN, TP, TOC,) and solute exchange rates between the sediment and water column (O2, NO3–N, NH4–N, FRP, and N2). The surfical sediments in Corunna Lake contained high concentrations of TN (5 mg/g dry mass), total phosphorus (0.6 mg/g dry mass), and TOC (~ 5% dry mass). The carbon stable isotope ratio (δ13C) and TOC:TN ratios (δ13C ~ ? 24, TOC:TN ~ 11–14) demonstrated that the composition of the organic matter in the sediment was a mixture derived primarily of degraded planktonic matter. The close association between TP and Fe concentrations highlighted the potential role Fe plays in mediating Filterable Reactive Phosphorus (FRP) concentrations in the water column of Corunna Lake. In situ benthic chamber incubations were used to measure benthic fluxes. Solute exchange rates between the sediment and water column in Corunna Lake were similar to other reported studies (O2 = ? 469 to ? 1765 µmol m? 2 h? 1, NH4–N = 0.1–63 µmol m? 2 h? 1, NO2/NO3–N = 0 µmol m? 2 h? 1, FRP = ? 4–1.6 µmol m? 2 h? 1and N2 = 12–356 µmol m? 2 h? 1). As more carbon was deposited and mineralized the efficiency of the bacterial population to denitrify nitrogen in the sediment decreases. The linkage between land use and benthic biogeochemistry was also explored. A dairy farm exists in the middle catchment of Corunna Lake, and the receiving bay sediment consistently demonstrated the highest oxygen consumption rates in winter and spring (? 1408 µmol m? 2 h? 1 in winter, ? 1691 µmol m? 2 h? 1 in spring) and lowest denitrification efficiencies during summer (~ 3%). Nitrate/nitrite fluxes were not observed during any of the chamber incubations, with the concentrations of nitrate/nitrite being below detection limits (< 10 μg/L). Seasonal changes influenced the rates of solute exchange between the sediment and water column. Critical measures of solute exchange for NH4–N and biogenic N2 indicated that seasonal temperature changes play a significant role in mediating the reaction rates of sedimentary based biogeochemical processes. Measurable FRP fluxes were small but greater in the benthic sediments which received higher carbon inputs. Sediments have a high capacity to adsorb P which is released as sediment oxygen demand increases as a result of increases in labile carbon loads.  相似文献   

7.
《Journal of Marine Systems》2006,59(1-2):143-158
Effects of stocking density on seston dynamics and filtering and biodeposition by the suspension-cultured Zhikong scallop Chlamys farreri Jones et Preston in a eutrophic bay (Sishili Bay, northern China), were determined in a 3-month semi-field experiment with continuous flow-through seawater from the bay. Results showed that the presence of the scallops could strongly decrease seston and chlorophyll a concentrations in the water column. Moreover, in a limited water column, increasing scallop density could cause seston depletion due to scallop's filtering and biodeposition process, and impair scallop growth. Both filtration rate and biodeposition rate of C. farreri showed significant negative correlation with their density and positive relationship with seston concentration. Calculation predicts that the daily removal of suspended matter from water column by the scallops in Sishili Bay ecosystem can be as high as 45% of the total suspended matter; and the daily production of biodeposits by the scallops in early summer in farming zone may amount to 7.78 g m 2, with daily C, N and P biodeposition rates of 3.06 × 10 1, 3.86 × 10 2 and 9.80 × 10 3 g m 2, respectively. The filtering and biodeposition by suspension-cultured scallops could substantially enhance the deposition of total suspended particulate material, suppress accumulation of particulate organic matter in water column, and increase the flux of C, N and P to benthos, strongly enhancing pelagic–benthic coupling. It was suggested that the filtering-biodeposition process by intensively suspension-cultured bivalve filter-feeders could exert strong top-down control on phytoplankton biomass and other suspended particulate material in coastal ecosystems. This study also indicated that commercially suspension-cultured bivalves may simultaneously and potentially aid in mitigating eutrophication pressures on coastal ecosystems subject to anthropogenic N and P loadings, serving as a eutrophic-environment bioremediator. The ecological services (e.g. filtering capacity, top-down control, and benthic–pelagic coupling) functioned by extractive bivalve aquaculture should be emphasized in coastal ecosystems.  相似文献   

8.
Oil sac volume, gonad size and moulting patterns were investigated in the copepod Calanus euxinus inhabiting deep and shallow zones of the Black Sea and penetrating into the Marmara Sea. In summer the C. euxinus population in deep layers of the Black Sea was dominated by pre-diapause and diapausing postmoult copepodite stage V (CV) with small sexually undifferentiated gonads and mean lipid content of 14.1 ± 6.0% of body volume. The lipid content of deep-living females was 7.2 ± 4.2% of body volume. At the same time, intermoult and premoult CV with enlarged gonads and low lipid content (7.7 ± 5.1% of body volume) and females with oil sac volume of 1.4 ± 1.0% were found at shallow stations. Premoult CV with oil volume of 0.6 ± 0.8% and mature females with little visual evidence of substantial lipid storage dominated in the Marmara Sea. The differences in moulting patterns and oil sac volumes of C. euxinus from deep zones and shallow regions suggest that vertical migrations to the oxygen minimum zone (OMZ) are necessary for formation of large lipid reserves providing high reproductive potential of this species. On the basis of an energy balance model it was shown that under low phytoplankton concentration of about 30 μg C l 1 preadults and adults migrating to the OMZ could accumulate lipids (up to 5% of body energy content daily), in contrast to copepods constrained to shallow oxic water columns of the Black Sea and from the Marmara Sea.  相似文献   

9.
An upgraded and revised physically–biologically coupled, nested 3D model with 4 km grid size is applied to investigate the seasonal carbon flux and its interannual variability. The model is validated using field data from the years for which the carbon flux was modelled, focussing on its precision in space and time, the adequacy of the validation data, suspended biomass and vertical export. The model appears to reproduce the space and time (± 1 week and 10 nautical miles) distribution of suspended biomass well, but it underestimates vertical export of carbon at depth. The modelled primary production ranges from 79 to 118 g C m 2 year 1 (average 93 g C m 2 year 1) between 4 different years with higher variability in the ice-covered Arctic (± 26%) than in the Atlantic (± 7%) section. Meteorological forcing has a strong impact on the vertical stratification of the regions dominated by Atlantic water and this results in significant differences in seasonal variability in primary production. The spatially integrated primary production in the Barents Sea is 42–49% greater during warm years than the production during the coolest and most ice-covered year.  相似文献   

10.
The strait between Novaya Zemlya and Frans Josef Land, here called the Barents Sea Exit (BSX) is investigated using data obtained from a current-meter array deployed in 1991–1992, and two numerical models (ROMS and NAME). Combining the observations and models the net volume flux towards the Arctic Ocean was estimated to 2.0 ± 0.6 Sv (1 Sv = 106 m3s? 1). The observations indicate that about half of this transport consists of dense, Cold Bottom Water, which may penetrate to great depths and contribute to the thermohaline circulation. Both models give quite similar net transport, seasonal variations and spatial current structures, and the discrepancies from the observations were related to the coarse representation of the bottom topography in the models. Also the models indicate that actual deployment did not capture the main in- and outflows through the BSX. A snapshot of the hydrographic structure (CTD section) indicates that both models are good at reproducing the salinity. Nevertheless, they react differently to atmospheric cooling, although the same meteorological forcing was applied. This may be due to the different parameterisation of sea ice and that tides were included in only one of the models (ROMS). Proxies for the heat transport are found to be small at the BSX, and it can not be ruled out that the Barents Sea is a heat sink rather than a heat source for the Arctic Ocean.  相似文献   

11.
12.
董琴  杨平  邓军林  汪丹 《船舶力学》2015,(6):690-699
船体板的总体断裂破坏往往是低周疲劳破坏与累积塑性破坏两种破坏模式耦合作用的结果,故在船体板低周疲劳裂纹扩展寿命评估中,其基于累积塑性应变的船体板低周疲劳裂纹扩展寿命分析能够更为符合实际地评估船体板的总体断裂承载能力。船体板低周疲劳裂纹扩展寿命由宏观可检测裂纹扩展到临界裂纹而发生破坏这段区间的寿命。船体在实际航行中受到多次波浪外载作用而使其进入塑性变形不断累积或不断反复的破坏过程,并最终导致低周疲劳裂纹的萌生及扩展而使结构破坏,其破坏形式分别对应于增量塑性变形破坏(或棘轮效应)或交变塑性变形破坏(或低周疲劳)。局部塑性变形的累积会加剧低周疲劳裂纹不断扩展,因而基于累积塑性破坏研究船体板低周疲劳扩展寿命更为合理。文中以船体板单次循环载荷后塑性应变大小为基础,依据累积递增塑性破坏过程及弹塑性理论,计算经过N次变幅循环载荷后船体板累积塑性应变值,结合循环应力—应变曲线获得相应的稳定的迟滞回线,确定裂纹尖端应力应变曲线及确定相关塑性参量并依据选取的断裂判据判定裂纹扩展。建立循环载荷下基于累积递增塑性破坏的船体板低周疲劳裂纹扩展寿命的计算模型考虑应力比对此裂纹扩展寿命计算模型的影响。由该方法计算出的疲劳裂纹扩展寿命将对正确预估船舶结构的低周疲劳强度从而提高船舶安全性有重要意义。  相似文献   

13.
In this study, a model for predicting chloride penetration in fly ash concrete under long-term exposure in a marine environment is developed. The empirical model was based on 2-, 3-, 4-, and 5-year investigation of concretes in a marine site. Regression analysis of the data was carried out by applying Fick's second law of diffusion to generate an empirical formula for predicting chloride concentration in concrete. The model uses the water to binder (W/B) ratio, fly ash content, distance from the concrete surface, and exposure time. Model validation revealed that the predicted chloride concentration levels were within a ±25% error margin (R2 = 0.91 ? 0.99) in the samples used to develop the model. The model was also verified using data from previous laboratory and field studies. Most predicted chloride concentration levels were within a ±30% margin of error from field samples. The model also predicted the strong effect of fly ash and W/B ratio on reducing chloride diffusion in concrete. Results clearly indicated that a high volume fly ash replacement (up to 50% by weight of binder) and a low W/B ratio will yield good chloride resistance in concrete under long-term exposure in a marine environment.  相似文献   

14.
《Marine Structures》2006,19(1):1-22
The effect of weld geometric profile on fatigue life of laser-welded HSLA-65 steel is evaluated. Presented are results of cruciform-shaped fatigue specimens with varying weld profiles loaded cyclically in axial tension–compression. Specimens with a nearly circular-weld profile were created at 133 cm/min, as part of this effort, with a hybrid laser gas-metal-arc welding GMAW (L/GMAW) process. The ability of the laser-welding process to produce desirable weld profiles resulted in fatigue life superior to that of conventional welds. Comparison of finite-element analyses, used to estimate stress-concentration factors, to the hot spot and mesh insensitive approaches for convergent cases with smooth weld transitions is presented in relation to the experimental results. When a geometry-based stress concentration factor is used, the fatigue tests show much less variability and can be lumped into one master curve.  相似文献   

15.
The experimental results of the collapse of three box girders subjected to pure bending moment are presented. The structures are made of high tensile steel of 690 MPa of nominal yield stress reinforced with bar stiffeners of the same material. The moment curvature curves are presented covering the pre- and post-collapse regions. The modes of collapse for each box girder are discussed considering the variation on the panel's slenderness. The concept of efficiency of high tensile steel structures is introduced. The concept is very useful to identify the governing parameters affecting the ultimate strength of 3D structures under predominant bending moment.  相似文献   

16.
Downward fluxes of organic biodeposits under suspended mussel culture cause benthic impacts such as microbial mat production. Quantifying sediment erosion in these coastal ecosystems is important for understanding how fluxes of organic matter and particulates contribute to benthic–pelagic coupling. Critical shear velocity (u?), erosion rates and particle size distributions of resuspended sediment were measured at two sites; an impacted muddy site with extensive mussel culture (site 1), and a coarser sandier site with less mussel influence (site 2), using a new method for assessing sediment erosion at Tracadie Bay, Prince Edward Island in August 2003. Shear forces were generated by vertically oscillating a perforated disc at controlled frequencies. These forces correspond to shear velocity, using a re-designed and calibrated Particle Erosion Simulator. Undisturbed sediment cores obtained by divers and grab (sub-cored using a Plexiglas? cores) were exposed to shear stress to compare differences between collection methods. Microbial mats were present at site 1 which initially biostabilized sediment against erosion due to ‘armoring’ of the sediment, but onset of erosion was abrupt once these mats failed. Erosion sequences at site 2 (without mat cover) were smoother resulting in less material being eroded. Mean mass of material eroded was 47 and 23 g m? 2 min? 1 at sites 1 and 2 respectively. Mat area cover and shear velocity was strongly related. Critical shear velocities varied between 1.70 and 1.77 cm s? 1, with no obvious differences between location or collection method, so sediments from these two contrasting sites had identical mean critical shear velocities. Significant differences existed in the concentrations of chlorophyll a, colloidal and bulk carbohydrates, between mats and bare sediment from site 1. Particle sizes measured by videography of resuspended sediment at different shear velocities ranged from 100 μm (the minimum diameter capable of being detected by the system), to large mat fragments of 1700 μm for both sites. These results provide evidence of the relevance of using a portable erosion device to indicate how sediment erodability is affected by mussel–microbial relationships.  相似文献   

17.
This work estimates new regionalized empirical parameterizations for preformed alkalinity (ATo) and the CO2 air–sea disequilibrium (?Cdis). Both are key terms for the computation of anthropogenic CO2 in the back-calculation methods. Data from the subsurface layer (75–180 m depth range) covering an area from North to South and from 19°E to 67.5°W (Pacific and Indian oceans) were taken from GLODAP (The Global Ocean Data Analysis Project) database. The subsurface layer is proved as a reliable reference for representing the main characteristics of the different water masses of the oceans. Besides, handing data from the two ocean basins altogether makes the new parameterizations of ATo and ?Cdis to be more globally consistent. Nevertheless, each ocean basin, at least in some regions, has different oceanographic characteristics based on its proper dynamical processes and water masses formation. In order to maintain each ocean basin ‘identity’ the whole domain was divided in six different regions (two of them sharing waters from Pacific and Indian oceans) and parameterizations in each region for both terms were obtained. Previously, data were transformed into a grid of 4°lat. × 5°lon. and the results obtained from the parameterizations were visualized and compare with pCO2 climatologies. From the comparisons with previous ?Cdis estimations good results are obtained showing the reliability and robustness of the new regionalized empiric parameterizations.  相似文献   

18.
This paper proposes a ductile tearing assessment diagram (TAD) to predict the load resistance to the crack extension relationship during the stable tearing process of the circular-hollow-section (CHS) joints under the reversed in-plane bending actions. The tearing assessment diagram utilizes the envelope of the load-deformation curve from the fracture test under reversed loadings to build the connection among the fracture resistance, load resistance and crack extension. To verify the proposed approach, this study performs fracture experiments, imposing the reversed in-plane bending on the CHS X-joints, made of Q345 steel, with a surface crack near the weld toe. The experimental investigation reveals the effect of the reversed loading on the fracture resistance and validates the TAD-based assessment for tubular joints. Meanwhile, this study performs the cyclic fracture test on the single-edge-notched-tension [SE(T)] specimen made of Q345 steel and derives the TAD from the experimental record of the SE(T) specimen. The specimen-based assessment successfully predicts the load versus crack extension relation for the reported joints under reversed loadings. The study provides a basic framework to predict the joint response under reversed loadings by integrating the material fracture characteristics.  相似文献   

19.
The spatial distribution of chlorophylls and carotenoids was recorded throughout the Gulf of Gabes (South Ionian Sea) in March 2007, and was related to patterns of the physical structure and the nutrient concentrations.Two distinct water masses were identified based on the temperature and salinity (TS) analysis: a cool and less salty Modified Atlantic Water (MAW) and a saltier Mediterranean Mixed Water (MMW). There was no significant difference in the mean nitrogen and phosphate concentrations between MMW and MAW, although the silica values were significantly higher in MAW. The Integrated chlorophyll a mean value was about 4 mg m? 2, with a maximum of 13 mg m? 2 at MAW stations.Higher Chlorophyll a records in typical MAW stations were mainly due to chlorophytes, which contributed up to 58% of the pigments concentrations in the MAW and about 46% in the MMW. The contribution of chlorophytes to total Chlorophyll a was found to be relatively stable throughout the water column. The contribution of diatoms, which were twofold higher in the MMW than in the MAW, did not exceed 17% of chlorophyll a and was mainly due to subsurface maxima. The chlorophytes, pelagophytes, prymnesiophytes and cryptophytes all together accounted for more than 77% of total chlorophyll a in the MAW and about 67% in the MMW.There were statistically significant differences between MMW and MAW in the pigment contribution of cyanobacteria and pelagophytes. These two taxa accounted for 13% and 24% of chlorophyll a respectively in the MAW and MMW indicating that these differences concerned phytoplankton classes at relatively low contributions to total chlorophyll a.  相似文献   

20.
The large quantities of particles delivered by the Mackenzie River to the coastal Beaufort Sea (Arctic Ocean) have implications for the spatial distribution, composition and productivity of its bacterial communities. Our objectives in this study were: (1) to assess the contribution of particle-associated bacteria (fraction  3 µm) to total bacterial production and their relationships with changing environmental conditions along a surface water transect; (2) to examine how particle-based heterotrophy changes over the annual cycle (Nov 2003–Aug 2004); and (3) to determine whether particle-associated bacterial assemblages differ in composition from the free-living communities (fraction < 3 µm). Our transect results showed that particle-associated bacteria contributed a variable percentage of leucine-based (BP-Leu) and thymidine-based (BP-TdR) bacterial production, with values up to 98% at the inshore, low salinity stations. The relative contribution of particle-associated bacteria to total BP-Leu was positively correlated with temperature and particulate organic material (POM) concentration. The annual dataset showed low activities of particle-associated bacteria during late fall and most of the winter, and a period of high particle-associated activity in spring and summer, likely related to the seasonal inputs of riverine POM. Results from catalyzed reporter deposition for fluorescence in situ hybridization (CARD-FISH) confirmed the dominance of Bacteria and presence of Archaea (43–84% and 0.2–5.5% of DAPI counts, respectively), which were evenly distributed throughout the Mackenzie Shelf, and not significantly related to environmental variables. Denaturing gradient gel electrophoresis (DGGE) revealed changes in the bacterial community structure among riverine, estuarine and marine stations, with separation according to temperature and salinity. There was evidence of differences between the particle-associated and free-living bacterial assemblages at the estuarine stations with highest POM content. Particle-associated bacteria are an important functional component of this Arctic ecosystem. Under a warmer climate, they are likely to play an increasing role in coastal biogeochemistry and carbon fluxes as a result of permafrost melting and increased particle transport from the tundra to coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号