首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents two fuzzy logic traction controllers and investigates their effect on longitudinal platoon systems. A fuzzy logic approach is appealing for traction control because of the nonlinearity and time-varying uncertainty involved in traction control systems

The fuzzy logic traction controllers we present regulate brake torque to control wheel slip, which is the normalized difference between wheel and vehicle speed. One fuzzy controller estimates the peak slip corresponding to the maximum tire-road adhesion coefficient and regulates wheel slip at the peak slip. The controller is attractive because of its ability to maximize acceleration and deceleration regardless of road condition. However, we find through simulations the controller's performance degrades in the presence of time-varying uncertainties. The other fuzzy logic controller regulates wheel slip at any desired value. Through simulations we find the controller robust against changing road conditions and uncertainties. The target slip is predetermined and not necessarily the peak slip for all road conditions. If the target slip is set low, stable acceleration and deceleration is guaranteed, regardless of road condition

We also study the effect of traction control on longitudinal vehicle platoon systems using simulations. The simulations include acceleration and deceleration maneuvers on an icy road. The results indicate traction control may substantially improve longitudinal platoon performance, especially when icy road conditions exist.  相似文献   

2.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。  相似文献   

3.
With the real time and accurate information of motor torque and rotation speed of the four-in-wheel-motordrive electric vehicles, a slip based algorithm for estimating maximum road friction coefficient is designed using Lyapunov stability theory. Modified Burckhardt tire model is used to describe longitudinal slip property of the tire. By introducing a new state variable, a nonlinear estimator is proposed to estimate the longitudinal tire force and the maximum road friction coefficient simultaneously. With the appropriate selection of estimation gain, the convergence of the estimation error of the tire longitudinal force and maximum road friction coefficient is proved through Lyapunov stability analysis. In addition, the error is exponentially stable near the origin. Finally the method is validated with Carsim-Simulink co-simulation and real vehicle tests under multi working conditions in acceleration situation which demonstrate high computational efficiency and accuracy of this method.  相似文献   

4.
针对独立驱动电动汽车在高附着系数路面高速急转时易发生侧翻事故,在低附着系数路面急转易发生侧滑失稳事故,且单一控制器在不同附着系数路面适应性较差等问题,根据独立驱动电动汽车特点设计了基于分层式结构的稳定性集成控制器。建立了整车动力学模型,并进行了车辆状态参数估计;设计了稳定性集成控制器的控制策略,对车辆的侧倾、横向稳定性状态判定条件和协调策略的制定进行了研究,分别设计了侧倾稳定性控制器和横向稳定性控制器;设置了路面附着系数0.9到0.2的对接路面仿真工况,并在此工况下对所设计的控制器的控制性能进行了仿真测试。结果表明,所设计的稳定性集成控制器相比于单一控制器具有更好的适应性,可有效降低车辆高速行驶过程中的横向载荷转移系数、质心侧偏角等状态量,提高车辆行驶的稳定性和安全性。  相似文献   

5.
面向汽车纵向安全辅助系统的路面附着系数估计方法   总被引:2,自引:0,他引:2  
文中通过仿真研究探索了一种基于车轮滑移率的路面附着系数识别方法.首先讨论了有效估计驱动轮滑移率和利用附着系数的途径,然后在此基础上,提出了基于贝叶斯原理的路面附着系数估计迭代算法,并利用车辆动力学软件veDYNA对该算法进行仿真分析.结果表明,在滑移率大于代表不同路面的最小滑移率阈值的工况下,该方法能够快速、准确地捕获路面特征,满足汽车纵向安全辅助系统调整安全策略的需要.  相似文献   

6.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

7.
8.
现有的安全距离模型是基于纵向相对车速或减速度值建立的,没有考虑移动目标的横向运动特性。本文利用移动目标横穿马路的速度、相对位置,建立横向安全距离模型,并提出一种基于横向安全距离模型的主动避障算法。首先,根据横向移动目标横穿马路的速度、相对位置和自车的制动距离建立横向安全距离模型,设计主动避障算法。接着,为计及路面条件对制动效果的影响,引入当前行驶路面估算的附着系数峰值估算最大制动减速度,约束目标避障减速度,并调整制动强度,以适应不同路况的安全避障行驶。最后,以典型横向移动目标骑行者作为研究对象,通过PreScan/Simulink/CarSim联合仿真验证避障算法的有效性。结果表明:基于横向安全距离模型的主动避障算法能有效避免与骑行者碰撞,提高行车的主动安全性。  相似文献   

9.
The design of the integrated active front steering and active differential control for handling improvement of road vehicles is undertaken. The controller design algorithm is based on the solution of a set of linear matrix inequalities that guarantee robustness against a number of vehicle parameters such as speed, cornering and braking stiffnesses. Vehicle plane dynamics are first expressed in the generic linear parameter-varying form, where the above-stated parameters are treated as interval uncertainties. Then, static-state feedback controllers ensuring robust performance against changing road conditions are designed. In a first series of simulations, the performance of the integrated controller is evaluated for a fishhook manoeuvre for different values of road adhesion coefficient. Then, the controller is tested for an emergency braking manoeuvre executed on a split-μ road. In all cases, it is shown that static-state feedback controllers designed by the proposed method can achieve remarkable road handling performance compared with uncontrolled vehicles.  相似文献   

10.
汽车防抱死制动系统(Anti-lock Braking System,ABS)的作用是确保汽车制动时行驶方向的稳定性、可靠性,但是目前仍存在非线性、时变性以及参数不确定性等问题。为保证汽车制动行驶过程中的操纵稳定性和安全性,进一步实现各工况下防抱死制动系统的优化控制,以影响整车稳定的变量滑移率为研究对象,分析所设计策略的控制效果。搭建汽车动力学模型、制动系统模型、轮胎模型和滑移率模型等主要模型,设计基于滑移率的ABS二阶非线性自抗扰控制器。运用MATLAB/Simulink软件对基于自抗扰控制(Active Disturbance Rejection Control,ADRC)的ABS制动过程和基于模糊PID控制的ABS制动过程进行仿真,对比研究最佳滑移率、载荷、水泥-冰对接路面、扰动等对制动过程中的轮速、车速以及滑移率等动态性征反映的稳定性和抗扰能力的影响,同时研究其对最终制动距离和最终制动时间反映的制动性能的影响。最后,将自抗扰控制器和模糊PID控制器装配于试验车辆的ABS,进行水泥路面和冰-水泥对接路面制动过程的实车试验。研究结果表明:基于二阶非线性自抗扰控制算法的ABS制动的最终制动距离和最终制动时间更短、制动效果更优,制动过程中的轮速、车速和滑移率在响应速度、稳定性和抗扰能力等方面均更佳;试验结果与仿真结果吻合,证明了仿真模型及其仿真结果的可行性和正确性。  相似文献   

11.
This paper presents a regenerative anti-lock braking system control method with road detection capability. The aim of the proposed methodology is to improve electric vehicle safety and energy economy during braking maneuvers. Vehicle body longitudinal deceleration is used to estimate a road surface. Based on the estimation results, the controller generates an appropriate braking torque to keep an optimal for various road surfaces wheel slip and to regenerate for a given motor the maximum possible amount of energy during vehicle deceleration. A fuzzy logic controller is applied to fulfill the task. The control method is tested on a four in-wheel-motor drive sport utility electric vehicle model. The model is constructed and parametrized according to the specifications provided by the vehicle manufacturer. The simulation results conducted on different road surfaces, including dry, wet and icy, are introduced.  相似文献   

12.
为实现轮毂电机驱动越野车辆在附着条件多变、路面起伏不定的复杂环境中动力性和稳定性的多目标优化,提出一种基于路面影响因子的自适应转矩控制策略。以滚动阻力差异、空气阻力归一化比例、坡度阻力归一化比例、路面附着差异方差以及最小路面附着系数5个特征参数作为输入,并基于模糊理论方法搭建路面影响因子五参数辨识模型。基于辨识出的路面影响因子,开发整车动力性和稳定性多目标优化自适应转矩控制策略,构建了三层式控制架构:顶层引入路面影响因子对加速度紧迫程度进行判定,采用模型预测控制算法得到期望总驱动力;中层为目标决策层,以最优滑转率为目标决策驱动防滑力矩,并基于路面行驶阻力,决策期望前馈补偿力矩;下层为转矩分配层,以需求总驱动力及轮胎利用率作为控制目标,引入路面影响因子优化两者权重系数,以多约束条件的混合优化算法对转矩进行自适应控制。利用Matlab/Simulink-CarSim联合仿真平台进行仿真,基于实车进行验证。结果表明,在低附着路面,在0.2 s内快速完成滑转率抑制;在对开路面,侧向位移接近0;在大扭曲路面,避免腾空车轮出现大滑转率,滑转率最高0.2。  相似文献   

13.
An accurate estimation of the maximum tire-road friction coefficient may provide higher performance in a vehicle active safety control system. Unfortunately, real-time tire-road friction coefficient estimation is costly and necessitates additional sensors that must be installed and maintained at all times. This paper proposes an advanced longitudinal tire-road friction coefficient estimation method that is capable of considering irregular road surfaces. The proposed algorithm uses a stiffness based estimation method, however, unlike previous studies, improvements were made by suggesting a third order model to solve problems related to nonlinear mu-slip curve. To attain the tire-road friction coefficient, real-time normalized force is obtained from the force estimator as exerted from the tire in the low slip region using the recursive least squares method. The decisive aspect of using the suggested algorithm lies in its low cost and versatility. It can be used under irregular road conditions due to its capability of easily obtaining wheel speed and acceleration values from production cars. The newly improved algorithm has been verified to computer simulations as well as compact size cars on dry asphalt conditions.  相似文献   

14.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

15.
在交通事故鉴定中,车辆行驶速度是事故处理和诉讼的重要依据。其中,路面附着系数是事故车速鉴定的重要参数。本文在大量实验数据基础上,拟合出车辆制动过程的特性曲线,并简化出相应的车速估算模型。利用此模型对不同车型、路面类型、湿滑状况和不同车速情况下的路面附着系数e进行了估算研究。经估算实例验证,文中的估算方法对不同状况下的路面附着系数具有较好的估算能力。  相似文献   

16.
转向加速工况下汽车驱动防滑控制系统滑转率算法研究   总被引:1,自引:0,他引:1  
汽车低速转弯加速时,用后轮轮速作为参考车速计算驱动轮滑转率会造成计算偏差,引起驱动防滑控制系统误干预,为此提出了驱动轮滑转率计算的修正算法.该修正算法不需要增加前轮转角传感器,而是采用两非驱动轮轮速估计车身横摆角速度和汽车前轮转角,进而计算出前轮参考轮速,并将前轮参考轮速代替车速对转弯工况的驱动轮滑转率计算进行修正.试验结果表明,该修正算法消除了滑转率计算误差,可防止汽车在高附着路面上转弯加速时驱动防滑控制系统的误干预.  相似文献   

17.
车辆在附着系数较小的圆曲线路段转向时,轮胎会处于非线性区内工作,此时基于线性理论的侧向稳定性分析方法会产生较大误差。建立6自由度非线性车辆系统模型,分析其处于非线性域与线性域下不同的特性状态,得到不同车速、路面附着系数下使车辆系统处于临界状态的圆曲线路段半径、超高设计指标。对线性域与非线性域内的车辆系统分别采用基于线性理论的根轨迹法与基于非线性理论的相平面法分析侧向稳定性,得到综合考虑2种状态下车辆临界失稳状态的圆曲线路段指标。结果表明,车速为60 km/h,路面附着系数为0.24,超高小于6% 时,车辆发生侧向失稳时轮胎处于非线性域,此时使用相平面法分析得到侧向失稳临界指标;车速为60 km/h,路面附着系数为大于0.4,超高处于4%到10%之间时,车辆发生侧向失稳时轮胎处于线性域,此时使用根轨迹法分析得到侧向失稳临界指标。   相似文献   

18.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

19.
Summary This paper presents a real-time implementation of a general merging algorithm for automated highway systems. A merging control problem is proposed first. A real-time algorithm is then presented, which is used to calculate a smooth reference speed trajectory for the merging vehicle based on the speed of the main lane vehicle. This algorithm can also be applied even when the main lane vehicles change speed. To make the algorithm adapt to different road layouts and to increase safety, a concept of virtual platooning is proposed. It effectively shifts the time of platoon formation forward prior to the start of real merging. Aspects closely related to real-time implementation are discussed, such as the controller adopted, the use of magnetometer based distance measurement and information passing by communication from main lane vehicles. Test results are presented and briefly analyzed.  相似文献   

20.
The integrated longitudinal and lateral dynamic motion control is important for four wheel independent drive (4WID) electric vehicles. Under critical driving conditions, direct yaw moment control (DYC) has been proved as effective for vehicle handling stability and maneuverability by implementing optimized torque distribution of each wheel, especially with independent wheel drive electric vehicles. The intended vehicle path upon driver steering input is heavily depending on the instantaneous vehicle speed, body side slip and yaw rate of a vehicle, which can directly affect the steering effort of driver. In this paper, we propose a dynamic curvature controller (DCC) by applying a the dynamic curvature of the path, derived from vehicle dynamic state variables; yaw rate, side slip angle, and speed of a vehicle. The proposed controller, combined with DYC and wheel longitudinal slip control, is to utilize the dynamic curvature as a target control parameter for a feedback, avoiding estimating the vehicle side-slip angle. The effectiveness of the proposed controller, in view of stability and improved handling, has been validated with numerical simulations and a series of experiments during cornering engaging a disturbance torque driven by two rear independent in-wheel motors of a 4WD micro electric vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号