首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
地铁盾构法隧道正交下穿施工对既有隧道影响分析   总被引:3,自引:0,他引:3  
康佐  代光辉 《隧道建设》2014,34(10):931-936
为了探讨新建隧道的施工对既有隧道产生的影响,以西安地铁某区间盾构隧道为背景,采用三维有限元数值计算方法,分析了新建盾构隧道正交下穿施工对地表及既有隧道结构的影响,得到了既有隧道管片位移、内力以及既有隧道上方地表沉降的变化规律。计算分析结果表明:正交下穿盾构隧道施工时,上方既有隧道与地表将会发生较大的不均匀沉降,同时既有隧道衬砌结构发生不均匀侧移和扭转,正交位置附近既有隧道结构下侧出现不同程度的拉应力,需要对正交区域内的地层进行加固。  相似文献   

2.
胥俊玮 《路基工程》2017,(1):169-173
为揭示新建隧道正交下穿施工对既有隧道结构安全及地表建筑物产生的影响,依托某新建地铁区间隧道工程,采用三维有限差分方法构建了新建隧道正交下穿既有隧道的三维数值计算模型,探讨了新建隧道正交下穿施工对地表沉降及既有隧道衬砌结构产生的影响,得出了地表横向、纵向沉降规律以及既有隧道衬砌结构变形、内力的变化规律。  相似文献   

3.
吴静  吴立  左清军 《公路工程》2015,(2):48-50,63
某大断面隧道从地铁下方穿过,且地表为城市一级主干道,隧道的开挖会对地铁衬砌及地表道路产生影响,隧道与地铁之间的净距控制非常关键。分别探讨了在不同净距下隧道开挖之后地铁衬砌位移及地表沉降位移,并参考一定的标准,并得出隧道与地铁之间最小安全距离。  相似文献   

4.
漳龙高速公路扩建隧道围岩力学特性三维有限元分析   总被引:6,自引:0,他引:6  
为分析隧道扩建过程中围岩的力学特性,确保施工期间围岩的稳定性,以漳龙高速公路后祠隧道扩建工程为依托,建立了反映实际地形的三维有限元模型,对后祠扩建隧道施工期间地表沉降、拱顶下沉、周边位移的特征以及拱脚和拱顶的应力变化规律进行计算分析。计算结果表明: 原位扩建隧道位移变化规律不同于普通新建隧道位移变化规律,隧道原位扩建施工过程中,地表沉降曲线表现出了明显的非对称性; 隧道掌子面前方12 m及掌子面后方24 m范围内变形较为迅速,为非稳定变形段; 根据隧道拱顶位移曲线,提出了针对扩建隧道位移空间变化规律的公式,该公式能预测后祠隧道的变形,从而为施工提供建议和指导; 隧道拱脚表现为压应力集中区,随着开挖的进行,拱脚主应力逐渐增大,而拱顶主应力逐渐减小并向拉应力过渡,最终拱顶呈现出较小的拉应力。  相似文献   

5.
盾构隧道施工地表沉降数值分析研究   总被引:6,自引:1,他引:6  
隧道施工引起的地层损失所导致的地表沉降变形预测和控制,是隧道工程领域重要的研究课题之一。以盾构隧道开挖引起地表沉降变形为研究对象,采用有限元数值分析软件模拟盾构隧道施工过程,分析盾构隧道引起的土体应力场、位移场变化,对比分析不同的地层损失、不同的土体本构模型、土体排水和不排水条件下隧道施工引起的地袁沉降变形规律,并进行了不同影响因素的敏感性分析。结果表明,地表沉降槽近似正态分布曲线,地表沉降的主要影响因素依次为隧道埋深、内摩擦角、压缩模量、粘聚力和泊松比;提出了盾构隧道施工引起的地表沉降计算模型,并采取有针对性的措施来减少地表沉降,减小对周围环境的不良影响。  相似文献   

6.
为了防止隧道洞口仰坡发生大规模滑坡地质灾害,针对莲花山隧道进口建筑弃渣回填的天然冲沟区段,提出了在左右线隧道中夹岩打设钻孔灌注桩的加固方案,建立了平面应变弹塑性模型对比分析无降水条件下加设钢筋混凝土支护桩前后隧道拱顶和地表位移情况,并在施工过程中监测左线隧道进口仰坡沉降进行了验证。数值计算结果表明,未采用支护桩措施时,右线隧道(后行、浅埋侧)的拱顶水平位移明显大于左线隧道,右线隧道拱顶水平位移最大值为61.2 mm,地表测点水平位移最大值为59.3 mm,沉降最大值为54.9 mm;采用支护桩措施后,左线和右线隧道的拱顶沉降变化不大(最大变化量约0.9 mm),右线隧道拱顶水平位移最大值减小为24.9 mm,地表测点水平位移最大值为1.7 mm,沉降最大值为5.3 mm。现场监测结果表明,左线隧道进口仰坡变形在左线隧道施工后30~50 d趋于稳定,受右线隧道进口施工影响很小;左线隧道进口仰坡沉降量最大为10.2 mm,洞内初期支护与二次衬砌结构均未出现病害现象。经综合分析认为,该隧道加固技术对控制隧道变形、预防滑坡灾害的效果较好,可为其他类似工程设计提供参考与借鉴。  相似文献   

7.
郭瑞  郑波  黎晨 《隧道建设》2019,39(4):601-608
为解决下穿隧道施工对既有高填土路堤的影响问题,依托成贵铁路大方隧道下穿杭瑞高速工程建立三维有限元模型,研究隧道施工对上覆地层位移影响、地表纵向变形特征以及下穿施工对地表各特征位置的主要影响范围。研究结果表明: 1)隧道下穿施工造成高填土路堤层发生显著沉降变形,上覆地层向隧道正中方向产生明显横向位移; 2)大方隧道下穿施工产生的地表纵向变形可划分为微变形区(洞口浅埋沉降区)、强变形区(高填土路堤沉降区)和弱变形区(地表沉降区)3个区域; 3)大方隧道施工分别开挖至洞口、挡墙和公路路面等特征位置时的地表纵向影响范围分别为开挖前方的75、52、65 m,在此影响范围内地层位移变化强烈; 4)拱顶动态沉降曲线均呈反“S”形特征。结合现场监测数据进行对比分析,得出模拟计算值与监测值变化趋势基本吻合,并最后给出相关施工建议措施。  相似文献   

8.
隧道开挖及疏水引起的地表沉降与变形   总被引:5,自引:0,他引:5  
应用随机介质理论、渗流理论和岩土固结理论,推导了隧道开挖疏水渗降漏斗曲线方程和考虑水渗流作用的隧道周边岩土体中有效应力的计算公式,并由此推导了隧道疏水地表沉降和水平位移计算公式;最后利用叠加原理,导出最终的地表沉降及水平位移计算公式。通过对某工程实例的计算分析,验证了该方法的正确性。结果表明:隧道开挖疏水产生的渗流对地表沉降的大小和范围影响明显。  相似文献   

9.
以某城市地铁盾构隧道为背景,采用三维有限元方法对地铁盾构隧道下穿既有城市公路隧道、近接建筑物箱型基础的情况进行了数值模拟,分析了盾构隧道施工引起地表沉降,及其对隧道路面沉降和应力的影响,探讨了近接建筑物施工引起建筑物箱型基础变形、侧倾和附加应力的变化规律,验证了采用围护桩加固对于减缓和控制盾构施工对公路隧道、建筑物基础沉降、侧倾和附加应力影响的有效性.  相似文献   

10.
建筑物下地铁车站穿越施工数值模拟方法分析   总被引:1,自引:0,他引:1       下载免费PDF全文
随着城市地下空间的开发利用,浅埋隧道穿越地面建筑物施工问题引起了越来越多的关注。以北京某地铁车站为例,采用3类数值模拟方法对建筑物下地铁车站动态施工全过程进行了模拟计算,对比分析了不同模拟方法对地表、围岩及支护结构受力变形的影响。结果表明:在不考虑建筑物及其荷载情况下地表、围岩及支护结构的应力、变形最小;在考虑建筑物存在情况下地表沉降量、基础沉降差及地表水平位移量较小,但沉降槽宽度较大;将建筑物上部结构简化成均布荷载时,基础存在与否对地表沉降曲线影响不大,但基础的存在可以减小地表水平位移、车站拱顶下沉、支护结构变形及立柱轴力。文章最后将计算沉降值与实测值进行了对比,考虑建筑物存在情况下的计算沉降值与实测值最为接近。  相似文献   

11.
黄斌  尹平  曾宪营 《中外公路》2012,32(4):244-248
采用FLAC3D有限差分数值模拟程序,对破碎围岩条件下小间距隧道施工过程进行了动态模拟。通过对应力场、位移场的分析,研究了其施工响应特征。研究结果表明:地表沉降主要集中在核心土开挖过程中;先行洞与后行洞在开挖过程中相互影响,表现为位移、变形和应力的增大,其中以先行洞在地表沉降和拱脚应力方面对后行洞的响应更为明显,而对塑性区的变化则影响较小。实测值与数值模拟结果较接近,二者的变化规律大致相同。  相似文献   

12.
隧道软弱围岩的卸荷特征与大变形控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
隧道软弱围岩大变形往往表现出时效性的流变变形特征,对此特征提出了一种环状间隔式衬砌与主动性卸载相结合的永久性支护理念。在合理的简化下建立了隧道衬砌段与非衬砌段的隧道力学分析模型,并在围岩常用蠕变模型、Mohr-Coulomb强度准则和非关联塑性流动法则基础上,对支护段围岩进行黏弹塑性求解,得到了围岩的黏弹塑性变形位移解。在参考现有围岩应力释放模型并确定无支护段围岩应力释放系数之后,对无支护隧道段围岩进行求解,得到了围岩的黏弹塑性变形位移表达式,建立了未支护洞段围岩位移与支护洞段围岩压力的关系。算例分析表明,理论分析与实际工程中围岩的应力和位移的变化是相吻合的。  相似文献   

13.
为了分析偏压条件下隧道不同施工方法对既有桥墩桩基稳定性的影响,以深圳市在建葵坝路隧道下穿高速公路桥梁段施工作为工程背景,采用有限差分软件FLAC3D对该隧道在3种不同施工方法作用下的施工过程进行了数值模拟。通过分析隧道围岩的应力和位移的分布特征以及桥墩桩基的变形方式和位移大小,比较了不同施工方法对桥墩桩基稳定性影响的大小。分析结果表明:顶弧侧壁法能够更好地控制桥桩位移和地表沉降,CD法次之,而台阶法最差。  相似文献   

14.
针对城市地铁隧道浅埋表层土厚度对隧道围岩稳定性的影响,利用有限元方法研究了不同覆土厚度条件下浅埋软岩隧道开挖过程中的变形规律.结果表明:受开挖的影响,左右两侧的x方向位移较明显,y方向位移主要表现为竖向沉降且由于受到开挖的影响其变量较大;表层土厚度越大,隧道围岩越不稳定;覆土较薄,围岩应力集中现象出现在隧道两侧,覆土较厚,围岩应力集中出现在x方向下方45°位置;衬砌区域上下侧所受应力高于左右两侧,且衬砌区域应力显著大于软岩.  相似文献   

15.
张冬梅  张博恺  刘志刚 《隧道建设》2015,35(11):1121-1126
经验表明,在软土、浅埋大断面隧道开挖方案中,加固方式对衬砌结构受力、隧道收敛变形和地层位移影响显著。港珠澳大桥珠海连接线拱北隧道具有隧道埋深浅、结构断面尺寸大、地质条件差、地理位置政治敏感性强等特点。以该隧道为背景,利用数值模拟方法,分析大直径钢管管幕冻结法施工和隧道开挖方案对衬砌结构受力和地层变形的影响。经分析发现:不同开挖方案对衬砌受力、变形和地层位移的影响显著;在分台阶开挖过程中,台阶越小,引起的衬砌受力、隧道收敛变形和地层位移越小;管幕冻结对改善衬砌受力和地层位移效果显著,根据管幕冻土受力特性对其关键受力部位提出建议。  相似文献   

16.
于介 《隧道建设》2020,40(12):1709-1716
针对黄土塬区浅埋大断面隧道开挖过程中,地表水沿着裂隙、黄土节理下渗导致地表沉陷、纵横向地表裂缝及初期支护结构破坏等问题,基于三维地质仿真模型方法,进行初期支护受力特征和变形规律分析,并模拟分析地层改良效果。结果表明: 1)隧道拱部为支护结构受力最薄弱区,表现为拱顶衬砌下表面拉应力和剪应力值大,当埋深为10~15 m时下台阶至仰拱开挖阶段随含水率增加拱顶沉降变形量剧增,且累计沉降量>250 mm时隧道结构最不安全,易产生环向张拉裂缝; 2)地表注浆能有效改善黄土的结构性能,有效控制地表沉降和围岩变形。  相似文献   

17.
以昆明轨道交通某区间盾构隧道施工过程中地表沉降的现场监测数据为基础,运用FLAC3D有限差分软件建立模型,对盾构施工开挖过程进行模拟,计算隧道开挖引起的地表沉降量。讨论了不同围岩应力释放条件下地表变形规律,以及隧道围岩在相同应力释放条件下在掌子面施加支护力前、后地表变形间的联系,同时将模拟计算得到的变形数据与工程实测数据进行比较分析。  相似文献   

18.
针对新建忻州隧道工程,运用有限元通用软件ANSYS,对大断面黄土隧道采用台阶法施工的过程进行数值模拟,探讨了采用台阶法施工隧道的围岩、初期支护及二次衬砌应力场和位移场随施工步的变化规律。在此基础上,研究了隧道初期支护、二次衬砌的支护效果以及隧道开挖对已施作初期支护受力及变形的影响。结果表明:①隧道施作初支有利于降低地层压应力,减小隧道变形;施作二衬能有效降低地层和初支的主应力,对隧道变形影响不大;②隧道的进一步开挖将导致已施作初支的压应力及位移值增大,使初支处于更危险的状态。  相似文献   

19.
唐明明  刘淼 《隧道建设》2015,35(2):115-120
交叠隧道在施工过程中对周围地层存在反复扰动,针对其力学行为和变形规律的研究十分有必要。以西安地铁临潼线左右线交叉叠落盾构隧道施工为背景,研究线路左右线隧道空间交叉转换施工下周围地层的变形规律及后施工隧道(左线)对已完成隧道(右线)的扰动情况。研究表明:隧道施工完成后,地表沉降槽整体呈条带状且沿区间走向分布;地表沉降随隧道垂直交叠程度的增加而增加,地表沉降最大值为9.79 mm,位于左右线完全垂直交叠位置处;左线隧道对先施工完成的右线隧道的影响主要表现为侧向推挤和增大地层附加应力的作用,但在垂直交叠位置扰动影响较小;施工扰动引起右线隧道最大水平位移为1.75 mm,最大沉降为1.97 mm。  相似文献   

20.
为了保证在我国黄土地区城市地铁盾构开挖在靠近桩基础时的安全性,降低盾构开挖对桩基础的扰动影响,基于ABAQUS数值模拟有限元分析软件,采用土体的修正剑桥本构关系,建立地铁盾构法开挖施工的三维有限元分析模型。对隧道盾构开挖过程中邻近桩基础的变形和地表沉降规律进行了计算分析。研究结果表明:隧道盾构对邻近桩基础的影响主要表现在桩基础的隧道埋深位置处,垂直隧道纵轴的水平方向(X方向)位移量上;在盾构开挖过程中,随着开挖面与桩之间距离d缩小,桩的水平方向位移逐渐增大;在d大致为[-0.5D,+0.5D]范围内时,变形最大;当d继续增大时,水平方向位移也继续增大,最终趋于稳定值。通过综合分析数值模拟计算和施工现场监测得到的地表位移变形曲线,可以发现在隧道轴线正上方位置地面的沉降最大,向隧道轴线两侧沉降逐渐减小,但在桩基附近的地表沉降相对较小,而桩顶承台也受到不均与沉降的影响产生偏移。在该隧道工程实际开挖中,需要加强承台不均匀沉降监测,以便及时采取控制措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号