首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
We report a model and controller for an active front-wheel steering (AFS) system. Two integrated dynamics control (IDC) systems are designed to investigate the performance of the AFS system when integrated with braking and steering systems. An 8-degrees-of-freedom vehicle model was employed to test the controllers. The controllers were inspected and compared under different driving and road conditions, with and without braking input, and with and without steering input. The results show that the AFS system performs kinematic steering assistance function and kinematic stabilisation function very well. Three controllers allowed the yaw rate to accurately follow a reference yaw rate, improving the lateral stability. The two IDC systems improved the lateral stability and vehicle control and were effective in reducing the sideslip angle.  相似文献   

14.
为了给营运客车横向稳定状态监测提供理论依据,针对极限工况下状态参数的临界值仿真结果,进行了营运客车稳定区域边界条件的研究。基于非线性三自由度车辆模型建立了基于扩展卡尔曼滤波(EKF)的状态参数估计器,对营运客车的质心侧偏角和横摆角速度进行实时估计,并利用Trucksim验证估计值具有较好的一致性和状态跟随能力。基于MATLAB/Simulink建立非线性七自由度车辆模型,分析不同行驶状态参数对质心侧偏角-质心侧偏角速度(β-β)相平面稳定区域边界的影响,基于仿真数据确定了以车速、前轮转角和路面附着系数为变量的稳定区域边界条件,结合状态估计模型获得以β-β决定的控制变量。在Trucksim中进行连续正弦方向盘转角输入标准稳定性试验,通过分析营运客车行驶过程中控制变量的曲线变化趋势是否超出稳定区域边界确定车辆的运行状态。结果表明:营运客车以60 km·h-1车速、小方向盘转角行驶在低附着系数(μ=0.3)路面和高附着系数(μ=0.85)路面时,横摆角速度对驾驶人的意图(方形盘转角曲线趋势)有很好的跟随能力,具有较小的延迟响应,车辆处于稳定状态,此时控制变量曲线一直处于稳定区域内;当相同工况下以大方向盘转角输入时,横摆角速度已经不能很好地跟随驾驶人意图,且低附着系数路面下,在3.5 s左右时方向盘转角已经回正,但横摆角速度仍位于最大值,具有较大的延迟,营运客车发生急转侧滑;高附着系数路面下第2.5 s和第6.2 s左右车辆发生严重偏移,车辆处于失稳状态,而对应时刻的控制变量曲线部分超出稳定边界,验证了营运客车横向稳定状态判据的准确性。  相似文献   

15.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

16.
17.
The sideslip driving status is of fundamental importance to the stability of a vehicle. This paper presents a practical vehicle sideslip driving status estimation method that uses ESP (electronic stability program) sensors. ESP sensors such as wheel speed, lateral acceleration, yaw rate and steering wheel angle sensors are used to determine the sideslip driving status and distinguish a banked road. This estimation algorithm contains front-rear sideslip and banked road detection methods. The proposed sideslip estimation algorithm was designed to use the analytical redundancy of these sensors and Lagrange interpolation methods. The performance and effectiveness of the proposed estimation and compensation algorithm were investigated using vehicle tests. This paper presents the results of two cases that were used for the experimental verification: a curved flat road and banked road.  相似文献   

18.
王伟  肖泽艳 《天津汽车》2010,(12):22-26
为提高车辆的横向稳定性,获得良好的操纵性能,利用ADAMS/car和MATLAB/simulink建立了以横摆角速度和质心侧偏角为控制变量的多级PID仿真模型,分别采用了单个车轮制动和单侧车轮制动产生附加横摆力矩的方式.通过蛇形试验验证了ESP控制器的有效性和对比了2种制动方式的控制效果.仿真试验表明:采用该ESP控制器可以很好地保持车辆的稳定性,采用单侧车轮制动产生附加横摆力矩的方式具有更快的控制速度和更好的控制效果.  相似文献   

19.
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   

20.
Fuzzy-logic applied to yaw moment control for vehicle stability   总被引:6,自引:0,他引:6  
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号