首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
本文对双燃料发动机的燃烧过程进行了分析介绍,包括滞燃期,主燃烧期。同时对影响燃烧过程的若干因素进行了分析,并提出了改善双燃料发动机低负荷性能的措施,最后还就双燃料发动机的不正常燃烧做了简要介绍和分析。  相似文献   

2.
爆燃是指发动机工作时一种不正常的工作现象。发动机工作时,当燃烧末端的可燃混合气,在正常火焰前锋到达之前,由于受高温、高压的影响,生成大量的性质极不稳定的过氧化物而自燃,形成爆炸性燃烧。此时,混合气的燃烧速度往往比正常值高达几十倍甚至上百倍,其燃烧压力、温度都将瞬时、局部地增加,这种状态的燃烧,称为汽车发动机的爆燃。  相似文献   

3.
AR燃烧是能有效防止不利扫气的低速范围内易引起缺火的技术,简单地说,就是未燃混合气不只是依靠火花塞点燃,还有部分靠自燃燃烧促进扫气和减少HC,AR燃烧发动机可能有效地增宽二冲程发动机致命弱点的低速扭矩,AR技术不适用于小排量摩托车发动机。  相似文献   

4.
对于汽(柴)油箱的焊补,一般的做法是先放净油,再用火碱与水的溶液清洗,尔后施焊,这样做不但工序繁琐、时间长,焊接时的安全系数也不高,易引起燃烧和爆炸。利用汽车、拖拉机的尾气不燃烧、  相似文献   

5.
发动机在燃烧过程中,由于不完全燃烧和高温燃烧,会产生一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)等有害气体,本文分析了以上三种会对大气造成污染的有害气体在发动机内形成的原因.并提出了相应的净化措施。  相似文献   

6.
4 化油器回火 4 1 化油器回火故障特征 所谓化油器回火,就是在发动机运转时,火焰突然从进气管向化油器部位返回而出现爆炸燃烧的现象。实质上就是发动机工作行程后期,气缸内燃料仍在燃烧,至排气行程后期还未烧完,此时进气门打开,燃烧火焰就与化油器进入的新鲜混合气相遇,进行猛烈的燃烧并发出响声。这是发动机使用中的常见故障之一,若不及时排除,会影响其使用性能。  相似文献   

7.
众所周知,空燃比与汽车的排放有着非常密切的关系,当供给功率混合气(浓混合气)时,发动机进行大功率输出,但混合气燃烧不完全,会使CO和HC的排放量增大;当供给经济混合气时,燃烧接近于完全燃烧,但是燃烧温度最高,会使NOx排放量增大。化油器是化油器式汽车燃料供给系统中一个十分重要和结构复杂的部件,其主要作用便是根据车辆的行驶状况形成恰当的可燃混合气。  相似文献   

8.
《汽车知识》2008,(2):70-77
爆震是什么 Q 老师,有很多人说福克斯发动机有爆震现象,请问爆震是什么意思啊!谢谢。 A 汽油发动机的可燃混合气,开始由高压火花点燃。然后,燃烧的火焰以火花为中心,向外传播,将燃烧室混合气都引燃,这种燃烧过程为正常燃烧。如果在火焰还没有到达之前,其余混合气未被引燃就自行发火,这种燃烧叫爆震,是不正常燃烧。它会在气缸内突然产生爆炸波,向四面冲击,使发动机的活塞、连杆、曲轴等发生强烈的振动,并伴有金属撞击声。  相似文献   

9.
电喷汽油机起动及暖机过程HC排放的测试分析   总被引:4,自引:0,他引:4  
程勇  王建昕  庄人隽  吴宁 《汽车工程》2002,24(4):331-335
根据实测的催化器入口、出口温度及HC排放浓度,结合示功图对电喷汽油机冷起动时HC排放量在台架上进行了模拟分析,将起动过程以节气门突开为界,划分为3个阶段,其中HC主要排放量发生在开始超导 劝到节气门开这一段时间内。适当提高空燃比及匹配合适的点火提前角。促使缸内发生不完全燃烧,则未燃HC在排气管内可继续燃烧,使得最终排出的HC量降低。在节气门开后,也可通过控制点火提前角,使缸内发生不完全燃烧,将燃烧延续到排气管内,即可降低HC排放量,也有助于加速催化器起燃。  相似文献   

10.
汽油发动机燃烧具有较大的危害,是发动机工作时的一种不正常燃烧现象,分析了汽油发动机爆燃的产生原因及其对发动机危害,提出了在使用过程中控制汽油发动机爆燃的具体措施。  相似文献   

11.
Most of hydrocarbon (HC) and carbon monoxide (CO) emissions from automotive DI Diesel engines are produced during the engine warm-up period and are primarily caused by difficulties in obtaining stable and efficient combustion under these conditions. Furthermore, the contribution of engine starting to these emissions is not negligible; since this operating condition is highly unfavorable for the combustion progress. Additionally, the catalytic converter is ineffective due to the low engine temperature. In conjunction with adequate engine settings (fuel injection and fresh air control), either the glow plugs or the intake air heater are activated during a portion of the engine warm-up period, so that a nominal engine temperatures is reached faster, and the impact of these difficulties is minimized. Measurement of gaseous pollutants during engine warm-up is currently possible with detectors used in standard exhaust gas analyzers (EGA), which have response times well-suited for sampling at such transient conditions. However, these devices are not suitable for the measurement of exhaust emissions produced during extremely short time intervals, such as engine starting. Herein, we present a methodology for the measurement of the cumulative pollutant emissions during the starting phase of passenger car DI Diesel engines, with the goal of overcoming this limitation by taking advantage of standard detectors. In the proposed method, a warm canister is filled with an exhaust gas sample at constant volumetric flow, during a time period that depends on the engine starting time; the gas concentration in the canister is later evaluated with a standard EGA. When compared with direct pollutant measurements performed with a state-of-art EGA, the proposed procedure was found to be more sensitive to combustion changes and provided more reliable data.  相似文献   

12.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   

13.
Vehicle emissions regulations are becoming increasingly severe and remain a principal issue for vehicle manufacturers. Since, WLTP (Worldwide harmonized Light vehicles Test Procedures) and RDE (real driving emission) regulations have been recently introduced, the engine operating conditions have been rapidly changed during the emission tests. Significantly more emissions are emitted during transient operation conditions compared to those at steady state operation conditions. For a diesel engine, combustion control is one of the most effective approaches to reduce engine exhaust emissions, particularly during the transient operation. The concern of this paper is about reducing emissions using a closed loop combustion control system which includes a EGR rate estimation model. The combustion control system calculates the angular position where 50 % of the injected fuel mass is burned (MFB50) using in-cylinder pressure for every cycle. In addition, the fuel injection timing is changed to make current MFB50 follow the target values. The EGR rate can be estimated by using trapped air mass and in-cylinder pressure when the intake valves are closed. When the EGR rate is different from the normal steady conditions, the target of MFB50 and the fuel injection timing are changed. The accuracy of the model is verified through engine tests, as well as the effect of combustion control. The peaks in NO level was decreased during transient conditions after adoption of the EGR model-based closed loop combustion control system.  相似文献   

14.
车用直喷式柴油机排气净化的途径   总被引:4,自引:1,他引:4  
刘巽俊  李骏 《汽车工程》1998,20(1):43-51
在改善车用柴油机燃油经济性的同时,需进一步降低氮氧化物和微粒排放,关键是进一步优化燃烧过程,减少有害排放物的生成,也要改善燃料品质,甚至进一步采用排气后处理技术,本文阐述了喷油系统和进气系统的改进,燃烧室设计的优化,增压中冷,废气再循环等技术措施的潜力,以及燃油改质,排气后处理等措施的效果。  相似文献   

15.
《JSAE Review》1995,16(1):27-33
The influence of fuel properties on combustion characteristics and exhaust emissions in a direct injection stratified charge SI engine with a “two-stage fuel injection system” was examined. The results showed that this type of DISC combustion system can be used with a wider range of fuels than ordinary homogeneous combustion systems. Lower exhaust emissions and higher thermal efficiency were achieved even with fuels with lower octane numbers and higher distillation temperatures.  相似文献   

16.
In SI engines, valve events have a major influence on volumetric efficiency, fuel economy and exhaust emissions. Moreover, swirl and tumble motions in the intake charge also improve combustion speed and quality by stratifying the mixture as well as intensifying the mixing rate of air and fuel. This paper investigates the behaviors of an engine and the combustion phenomenon for various intake valve timings and intake charge motions using CVVT system and port masking schemes. Test condition includes a part load and a cold idle condition inclusive of a cold start of the engine. Time-resolved HC and NOx emissions were also measured at an exhaust port to examine their formation mechanisms and behaviors with fast response HC/NOx analyzers. In conclusion, the fast burning of fuel and improved combustion quality by enhanced charge motions reduced unburned HC emissions, and advancing the intake valve opening reduced HC as well as NOx. Furthermore, HCs during the cold transient phase and idle conditions decreased with recalibrated start parameters such as lean air-fuel ratio and spark retardation via the enhancement of intake charge motions.  相似文献   

17.
介绍了在一台单缸电控汽油喷射发动机上进行的火花点火发动机碗型燃烧室的优化试验研究。试验结果表明,合理选择碗型燃烧室的结构尺寸,结合排气再循环提高压缩比,可改善发动机的经济性并降低排放。  相似文献   

18.
柴油机多环芳香烃排放规律的研究   总被引:8,自引:0,他引:8  
选用色谱-质谱联用中的选择离子检测技术研究了柴油机多环芳香烃放规律,分析了苯并药芘来源,并采用13工况法测定了14种曲环芳香烃物质的比排放量。结果表明,多环芳香烃排放量随着工况的改变有很大的变化;苯并芘完全是在燃料燃烧过程中的;有较多苯环的多环芳香地烃比排放量小,而具有较少苯环的多环芳香烃比排放量大。  相似文献   

19.
A low-cost solution based on fuel injection strategies was investigated to optimize the combustion process in a boosted port fuel injection spark ignition (PFI SI) engine. The goal was to reduce the fuel consumption and pollutant emissions while maintaining performance. The effect of fuel injection was analyzed for the closed and open valve conditions, and the multiple injection strategies (MIS) based on double and triple fuel injection in the open-valve condition. The tests were performed on an optical accessible single-cylinder PFI SI engine equipped with an external boost device. The engine was operated at full load and with a stoichiometric ratio equivalent to that of commercial gasolines. Optical techniques based on 2D-digital imaging were used to follow the flame propagation from the flame kernel to late combustion phase. In particular, the diffusion-controlled flames near the valves and cylinder walls, due to fuel deposition, were studied. In these conditions, the presence of soot was measured by two-color pyrometry, and correlated with engine parameters and exhaust emissions measured by conventional methods. The open valve fuel injection strategies demonstrated better combustion process efficiency than the closed ones. They provided very low soot levels in the combustion chamber and engine exhaust, and a reduction in specific fuel consumption. The multiple injection strategies proved to be the best solution in terms of performance, soot concentration, and fuel consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号