首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

2.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

3.
Despite the rapid market penetration of hybrid vehicles (HVs), their usage and contributions to environmental protection have not been examined by vehicle traveling data. In this paper, we analyzed Japan’s used car market data to understand how HVs are used on the street. We find GV drivers with high travel demand switched from GVs to HVs during the transition period. Despite HV owners driving much longer distances than conventional gasoline vehicle (GV) owners, they emit less carbon dioxide (CO2) emissions, owing to better fuel economy. We also find that HV owners spend roughly the same amount of money annually as GV owners. However, the per-kilometer travel cost of HVs is much lower than that of GVs even if the depreciation cost of the vehicle and vehicle related taxes are included in the analysis.  相似文献   

4.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

5.
The Connected Vehicle (CV) technology is a mobile platform that enables a new dimension of data exchange among vehicles and between vehicles and infrastructure. This data source could improve the estimation of Measures of Effectiveness (MOEs) for traffic operations in real-time, allowing to perfectly monitor traffic states after being fully adopted. However, as with any novel technology, the CV adoption will be a gradual process. This research focuses on determining minimum CV technology penetration rates that would guarantee accurate MOE estimates on signalized arterials. First, we present estimation methods for various MOEs such as average speed, number of stops, acceleration noise, and delay, followed by an initial assessment of the penetration rates required to accurately estimate them in undersaturated and oversaturated conditions. Next, we propose a methodology to determine the minimum CV market penetration rates to guarantee accurate MOE estimates as a function of traffic conditions, signal settings, sampling duration, and the MOE variability. A correction factor is also provided to account for small vehicle populations where sampling is done without replacement. The methodology is tested in a simulated segment of the San Pablo Avenue arterial in Berkeley, CA. The outcomes show that the minimum penetration rate required can be estimated within 1% for most MOEs under a wide range of traffic conditions. The proposed methodology can be used to determine if MOE estimates obtained with a portion of CV equipped vehicles can yield accurate enough results. The methodology could also be used to develop and assess control strategies towards improved arterial traffic operations.  相似文献   

6.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

7.
Probe vehicles provide some of the most useful data for road traffic monitoring because they can acquire wide-ranging and spatiotemporally detailed information at a relatively low cost compared with traditional fixed-point observation. However, current GPS-equipped probe vehicles cannot directly provide us volume-related variables such as flow and density. In this paper, we propose a new probe vehicle-based estimation method for obtaining volume-related variables by assuming that a probe vehicle can measure the spacing to its leading one. This assumption can be realized by utilizing key technologies in advanced driver assistance systems that are expected to spread in the near future. We developed a method of estimating the flow, density, and speed from the probe vehicle data without exogenous assumptions on traffic flow characteristics, such as a fundamental diagram. In order to quantify the characteristics of the method, we performed a field experiment at a real-world urban expressway by employing prototypes of the probe vehicles with spacing measurement equipment. The result showed that the proposed method could accurately estimate the 5 min and hourly traffic volumes with probe vehicle penetration rate of 3.5% and 0.2%, respectively.  相似文献   

8.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

9.
Connected and automated vehicle technologies hold great promises for improving the safety, efficiency, and environmental impacts of the transportation sector. In this study we are concerned with multihop connectivity of instantaneous vehicular one-dimensional ad hoc networks (VANETs) formed by connected vehicles along a communication path in a road network with given either vehicle locations or traffic densities, market penetration rates, and transmission ranges. We first define a new random variable for the location of the end node of a communication chain, which is a discrete random variable with given vehicle locations and a mixed random variable with given traffic densities. Then recursive, iterative, or differential equation models of instantaneous multihop connectivity between two communication nodes are derived from the relationships between end node probability mass or density function and connectivity. Assuming a simple communication model, the new models are applicable for general distribution patterns of vehicles and communication nodes, including non-evenly placed vehicles and nonhomogeneous Poisson distributions of nodes. With given vehicle locations, the computational cost for this new model is linear to the number of vehicles; with given traffic densities, we derive a new closed-form connectivity model for homogeneous Poisson distributions of communication nodes and an approximate closed-form model when distribution patterns of communication nodes are given by spatial renewal processes. We then apply the models to evaluate impacts on connectivity of traffic patterns, including shock waves, and road-side stations. The connectivity model could be helpful for designing routing protocols in VANETs and developing their applications in transportation systems.  相似文献   

10.
11.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

12.
Plug-in electric vehicles (PEVs) have the potential to reduce green house gas emissions from the transport sector. However, the limited electric range of PEVs could impede their market introduction. Still some potential users are willing to pay more for PEVs. The combined effect of these and other influencing factors as well as the resulting future market evolution are unclear. Here, we study the market evolution of PEVs in Germany until 2020. Our results reveal a great deal of uncertainty in the market evolution of PEVs due to external conditions and the users’ willingness to pay. We find the future share of PEVs in German passenger car stock to range from 0.4% to almost 3% by 2020. Energy prices have a large impact on PEV market evolution as a 25% increase in fuel prices would double the number of PEVs in stock by 2020 compared to a reference scenario. We find a special depreciation allowance for commercial vehicles and a subsidy of 1000 Euro as the most effective and efficient monetary policy options. The high uncertainty of the market evolution implies that policies to foster market diffusion of PEVs should be dynamically adaptable to react to changing framework conditions.  相似文献   

13.
Vehicular ad hoc networks (VANETs) formed by connected vehicles in a traffic stream could be applied to improve safety, mobility, and environmental impacts of a transportation system. In this paper, we present analytical models for the instantaneous communication throughputs of VANETs to measure the efficiency of information propagation under various traffic conditions at a time instant. In particular, we define broadcast and unicast communication throughputs by the wireless channel bandwith multiplied by the average probabilities that one vehicle is a successful receiver and sender in a VAENT, respectively. With a protocol communication model, we derive formulas to determine the probabilities for an equipped vehicle to be a successful broadcast receiver and a successful unicast receiver/sender, and obtain broadcast and unicast throughputs along discrete and continuous traffic streams. We further examine the impacts on communication throughputs of the transmission range and the interference range of dedicated short range communication devices as well as the market penetration rate of equipped vehicles and the percentage of senders. Finally, we investigate the influence of shock waves on communication throughputs.  相似文献   

14.
Introduction of alternative fuels in the passenger car fleet is widely discussed in the light of emission reductions. Worldwide experiences show that the market introduction depends on the actions of many stakeholders, like car industry, fuel companies and consumers. The process demands well-timed actions and investments, whilst economic chances and risks are distributed highly unequally. Policy makers set the framework conditions, although the influence of the height and timing of subsidies, tax reductions and other stimulation policies are not well understood yet.The market introduction of alternative fuel vehicles was studied with the example of natural gas cars in Switzerland. Stakeholder analysis and system dynamics modeling techniques were used to characterize the system. Analyses identify difficulties and chances in the market penetration process of natural gas cars. For example, a critical balance between fueling station upgrade investments and natural gas car sales is needed. Further, it is found that large time delays exist between strategic policy actions and frequently used market penetration indicators (e.g. car sales and infrastructure expansion), limiting the ability of policy makers to assess the performance of their strategy. Referring to elements of the Balanced Scorecard approach, a set of five alternative indicators is proposed to better measure the performance of the implemented strategy.  相似文献   

15.
Alternative powertrains are considered as a promising option to significantly reduce CO2 emissions from passenger cars. One major prerequisite is their successful market introduction. In this paper, we present a system dynamics model that allows for the evaluation of strategies for the market introduction of alternative powertrain technologies in long-range passenger cars (⩾400 km) under competition. The model considers two competing manufacturers, one first-mover and one follower, each introducing plug-in hybrids and fuel cell electric vehicles according to exogenously defined strategies, which comprise timing, pricing, and technology parameters. The manufacturers can learn from each other due to technology spillover, leading to cost reductions of the powertrains. We use an exemplary dataset for the German car market to study the manufacturers’ influence on the market success of alternative powertrains as well as the underlying mechanisms. The results indicate that in general more competition leads to higher market shares of alternatively powered vehicles and thus allows for a higher reduction of emissions. However, this might cause decreasing profits for both manufacturers, especially if the follower pursues an aggressive pricing strategy when entering the market to gain market shares from its competitor. Also, technology spillover has a positive effect on the market penetration. This particularly holds true for a low level of technology experience where high cost reductions can be achieved and for fuel cell electric vehicles where the costs of the powertrain are much higher compared to plug-in hybrids.  相似文献   

16.
The integration of internet and mobile phones has opened the door to a new wave of utilizing private vehicles as probes not only for performance evaluation but for traffic control as well, gradually replacing the role of traffic surveillance systems as the dominant source of traffic data. To prepare for such a paradigm shift, one needs to overcome some key institutional barriers, in particular, the privacy issue. A Highway Voting System (HVS) is proposed to address this issue in which drivers provide link- and/or path-based vehicle data to the traffic management system in the form of “votes” in order to receive favorable service from traffic control. The proposed HVS offers a platform that links data from individual vehicles directly with traffic control. In the system, traffic control responds to voting vehicles in a way similar to the current system responding to prioritized vehicles and providing the requested services accordingly. We show in the paper that the proposed “voting” system can effectively resolve the privacy issue which often hampers traffic engineers from getting detailed data from drivers. Strategies to entice drivers into “voting” so as to increase the market penetration level under all traffic conditions are discussed. Though the focus of the paper is on addressing the institutional issues associated with data acquisition from individual vehicles, other research topics associated with the proposed system are identified. Two examples are given to demonstrate the impact of the proposed system on algorithm development and traffic control.  相似文献   

17.
This study introduces a new CONnectivity ROBustness model (CONROB) to assess vehicle-to-vehicle communication in connected vehicle (CV) environments. CONROB is based on Newton’s universal law of gravitation and accounts for multiple factors affecting the connectivity in CV environments such as market penetration, wireless transmission range, spatial distribution of vehicles relative to each other, the spatial propagation of the wireless signal, and traffic density. The proposed methodology for the connectivity robustness calculation in CONROB accounts for the Link Expiration Time (LET) and the Route Expiration Time (RET) that are reflected in the stability of links between each two adjacent vehicles and the expiration time of communication routes between vehicles. Using a 117 sq-km (45-square mile) network in Washington County, located west of Portland city, Oregon, a microscopic simulation model (VISSIM) was built to verify CONROB model. A total of 45 scenarios were simulated for different traffic densities generated from five different traffic demand levels, three levels of market penetration (5%, 15%, and 25%), and three transmission range values [76 (250), 152 (500), and 305 (1000) m (ft)]. The simulation results show that the overall robustness increases as the market penetration increases, given the same transmission range, and relative traffic density. Similarly, the overall connectivity robustness increases as the relative traffic density increases for the same market penetration. More so, the connectivity robustness becomes more sensitive to the relative traffic density at higher values of transmission range and market penetration. Multiple regression analysis was conducted to show the significant effect of relative traffic density, transmission range, and market penetration on the robustness measure. The results of the study provide an evidence of the ability of the model to capture the effect of the different factors on the connectivity between vehicles, which provides a viable tool for assessing CV environments.  相似文献   

18.
Plug-in Hybrid Electric Vehicles (PHEVs) show potential to reduce greenhouse gas (GHG) emissions, increase fuel efficiency, and offer driving ranges that are not limited by battery capacity. However, these benefits will not be realized if consumers do not adopt this new technology. Several agent-based models have been developed to model potential market penetration of PHEVs, but gaps in the available data limit the usefulness of these models. To address this, we administered a survey to 1000 stated US residents, using Amazon Mechanical Turk, to better understand factors influencing the potential for PHEV market penetration. Our analysis of the survey results reveals quantitative patterns and correlations that extend the existing literature. For example, respondents who felt most strongly about reducing US transportation energy consumption and cutting greenhouse gas emissions had, respectively, 71 and 44 times greater odds of saying they would consider purchasing a compact PHEV than those who felt least strongly about these issues. However, even the most inclined to consider a compact PHEV were not generally willing to pay more than a few thousand US dollars extra for the sticker price. Consistent with prior research, we found that financial and battery-related concerns remain major obstacles to widespread PHEV market penetration. We discuss how our results help to inform agent-based models of PHEV market penetration, governmental policies, and manufacturer pricing and marketing strategies to promote consumer adoption of PHEVs.  相似文献   

19.
Introduction of electric vehicles (EVs) or plug-in electric vehicles (PEVs) in the road transportation can significantly reduce the carbon emission. Hence, the demand of EVs is likely to increase in the near future. Large penetration of EVs will also ultimately result into high loads on the existing power grids. The controlled charging of EVs can have a significant impact on the power grid load, voltage, frequency, and power losses. In this paper, we have provided a comprehensive review of various energy optimization approaches used for EVs charging. Energy optimization approaches used for EVs not only enhance the battery life but also contribute in regulating the voltage and frequency. During EVs charging, various objective functions such as supporting the renewable energy sources, minimization of the peak load, energy cost, and maximization of the aggregator profit have also been studied from optimization perspectives. The controlled and an optimized EVs charging enhances the performance of EVs batteries and conserves the energy in the system by minimizing the load and power losses. The different EVs charging approaches such as centralized and distributed suited for different objective functions have also been studied and compared with respect to various optimization approaches.  相似文献   

20.
We perform a meta-analysis of studies investigating consumer preferences for electric and other alternative fuel vehicles (AFVs) to provide insights into the way driving range is traded off for capital costs. We find that consumers are willing to pay, on average, between 66 and 75 US$ for a 1-mile increase in driving range. Ceteris paribus, 100-mile-range cars have to be priced about 60% less than their conventional counterparts to become competitive. In line with intuition, but in contrast to most specifications employed in primary studies, we find that consumers’ marginal willingness to pay (WTP) decreases at a diminishing rate with increases in driving range. The variation in the WTP and compensating variation estimates among examined studies can be attributed to differences in the levels of driving range considered, in other elements of the study design and in the country of study. Our findings support stated preference literature’s conclusion that short driving range has been a major limitation to the large-scale adoption of battery electric vehicles (BEVs) and other AFVs, and that technological developments permitting longer driving ranges will, to some extent, facilitate their market penetration. We further propose that consumer valuation of driving range should not be examined in isolation from other attributes related to refuelling activities, such as refuelling duration and the coverage of refuelling infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号