首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The results presented in this report are based on data obtained from Chicago's three largest diesel commuter railroads. Those aspects of their operations that relate to energy and pollution are described. Service characteristics, such as average occupancy and average trip distance, are presented. Energy consumption results are presented and discussed. With energy efficiency measured in passenger-miles per Btu, it is found that trips by diesel commuter train are 3.5 times more energy efficient than Chicago Central Area auto trips. The total trip from home to suburban station, then by train to a downtown terminal, is found to be 2.2 times more energy efficient than Chicago Central Area auto trips. Pollutant production rates are presented for five pollutants. For every pollutant except sulfur oxides, trains are found to be less polluting per passenger-mile than autos. Per passenger-mile pollutant emissions from trains are, overall, less damaging by a factor of 5.5 than the per passenger-mile emissions from autos. Travel on these diesel commuter trains is less costly to society than auto travel (1972 suburban-based autos). This is the case whether one compares the train trip alone with an auto trip or the home-to-suburb an-station-tlien-to-a-downtown-terminal trip with a home-to-downtown auto trip.  相似文献   

2.
Within the transport sector, modal shift towards more efficient and less polluting modes could be a key policy goal to help meet targets to reduce energy consumption and carbon emissions. However, making comparisons between modes is not necessarily straightforward. Average energy and emissions data are often relied upon, particularly for, rail, which may not be applicable to a given context. Some UK train operating companies have recently fitted electricity metres to their trains, from which energy consumption data have been obtained. This has enabled an understanding to be gained of how energy consumption and related emissions are affected by a number of factors, including train and service type. Comparisons are made with existing data for road and rail. It is noted that although more specific data can be useful in informing policy and making some decisions, average data continue to play an important role when considering the overall picture.  相似文献   

3.
An experimental study to measure the evaporation rates, engine performance and emission characteristics of cotton seed biodiesel (cotton seed oil methyl ester) and its blends in different volumetric proportions with diesel is presented. The thermo-physical properties of all the fuel blends have been measured and presented. Evaporation rates of neat cotton seed biodiesel, neat diesel and their bends have been measured under slow convective environment of air flowing with a constant temperature. Evaporation constants have been determined by using the droplet regression rate data. The neat fuels and fuel blends have been utilized in a test engine with different load conditions to evaluate the performance, combustion and emission characteristics of the fuels. The specific fuel consumption values of the two blends, viz. B25 and B75 are found to be same. At the highest load, B0 records the lowest CO volume followed by B100. From the observed evaporation, performance and emissions characteristics, it is suggested that a blend of B50 and B75 can be optimally used in standard diesel engine settings.  相似文献   

4.
This paper evaluates the impact of alternative bus transit technologies including compressed natural gas, biodiesel, and diesel-electric hybrid on greenhouse gas emissions along a busy transit corridor using a lifecycle analysis approach. In addition, we compare the operational emissions of buses running on these technologies using an instantaneous speed and an average speed model. Our results indicate that operational emissions make-up the largest portion of lifecycle emissions. When comparing instantaneous and average speed emissions we find that both methods produce consistent results for diesel, however, the average speed method underestimates biodiesel emissions by 21% and overestimates compressed natural gas emissions by 16%. Bus technologies ranked in increasing order of lifecycle greenhouse gas emissions are: hybrid, compressed natural gas, biodiesel, and conventional diesel.  相似文献   

5.
对上海轨道交通12号线配线车站设置的停车线长度,包括1列位、1列位+1节车和2列位进行了探讨,对这几种停车线长度进行了比较,并对具体车站停车线长度进行了详细设计和计算。  相似文献   

6.
With a growing urban population, it is crucial to maintain and develop environmentally friendly transport modes. However, while one of the most important indicators of environmental performance is water use, very few studies have quantified the total water requirements associated with different transport modes.This study uses input-output analysis to quantify the total water requirements of different passenger-transport modes in Melbourne, Australia, including the direct and indirect water requirements of petrol cars, regional diesel trains and electric metropolitan trains.Results show that urban electric trains are the least water intensive transport mode (3.4 L/pkm) followed by regional diesel trains (5.2 L/pkm) and petrol cars (6.4 L/pkm). These intensities result in average daily per capita transport-related water use that can be greater than residential water use. Findings also show that occupancy rates greatly affect the water intensity of transport modes and that when occupied by five passengers, cars are the least water intensive transport mode. Finally, this study shows that water use associated with transport depends on a range of factors across the supply chain and that indirect requirements associated with operations, including administration, advertisement, servicing and others, can represent a significant share of the total. Reducing the total water requirements of transport modes is therefore a shared responsibility between all the actors involved and integrated action plans are needed in order to reduce water use associated with transport.  相似文献   

7.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

8.
This paper analyses the interactions between vehicles, infrastructure and environment for rail traffic. It identifies variables having a significant influence on sound levels, defines a standard procedure for measuring noise, and develops a database for setting up and calibrating train noise models. A pilot study looks at two railway lines passing through Vercelli, a medium sized town in the north-west of Italy. Four main conclusions were drawn. First, in certain conditions, variables that normally influence noise production can be neglected (e.g. when surrounding environmental conditions are constant, different types of train do not cause a significant variation in noise level). Secondly, when diesel trains are travelling at less than 70 km/h, a speed change of 30–40 km/h significantly affects the maximum noise level (Lmax). However, for electrified lines, when speed is below 80 km/h, a change of 20–30 km/h does not cause significant variations in Lmax. Thirdly, for diesel trains transiting at low speeds––e.g. near stations––noise emissions are strongly affected by acceleration/deceleration. Lastly, an approach based on ‘sites types’ is able to produce useful results because site configuration and the presence of building significantly affect Lmax. High buildings along the line can increase noise levels and may nullify the advantages derived from technological advance in the vehicles.  相似文献   

9.
This paper assesses alternative fuel options for transit buses. We consider the following options for a 40-foot and a 60-foot transit bus: a conventional bus powered by either diesel or a biodiesel blend (B20 or B100), a diesel hybrid-electric bus, a sparking-ignition bus powered by Compressed Natural Gas (CNG) or Liquefied Natural Gas (LNG), and a battery electric bus (BEB) (rapid or slow charging). We estimate life cycle ownership costs (for buses and infrastructure) and environmental externalities caused by greenhouse gases (GHGs) and criteria air pollutants (CAPs) emitted from the life cycle of bus operations. We find that all alternative fuel options lead to higher life cycle ownership and external costs than conventional diesel. When external funding is available to pay for 80% of vehicle purchase expenditures (which is usually the case for U.S. transit agencies), BEBs yield large reductions (17–23%) in terms of ownership and external costs compared to diesel. Furthermore, BEBs’ advantages are robust to changes in operation and economic assumptions when external funding is available. BEBs are able to reduce CAP emissions significantly in Pittsburgh’s hotspot areas, where existing bus fleets contribute to 1% of particulate matter emissions from mobile sources. We recognize that there are still practical barriers for BEBs, e.g. range limits, land to build the charging infrastructure, and coordination with utilities. However, favorable trends such as better battery performance and economics, cleaner electricity grid, improved technology maturity, and accumulated operation experience may favor use of BEBs where feasible.  相似文献   

10.
In this article we estimate external costs for four representative types of freight trains. For each type of freight train, we estimate three general types of external costs and compare them with the private costs experienced by railroad companies. The general types of external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); and noise. Resulting private and external costs are compared with those of freight trucking, estimated in an earlier article. Rail external costs are 0.24 cent to 0.25 cent (US) per ton-mile, well less than the 1.11 cent for freight trucking, but external costs for rail generally constitute a larger amount relative to private costs, 9.3–22.6%, than is the case for trucking, 13.2%.  相似文献   

11.
Increasing attention is being paid to airborne particles in railway environments because of their potential to adversely affect health. In this study, we investigate the contribution of moving trains to both the concentration and size distribution of particles in tunnel environments. Real-time measurements were taken with high time-resolution instruments at a railway station platform in a tunnel in Stockholm in January 2013. The results show that individual trains stopping and starting at the platform substantially elevate the particulate concentrations with a mobility diameter greater than 100 nm. Two size modes of the particulate number concentrations were obtained. A mode of around 170 nm occurs when a train moves, while the other mode peaks at about 30 nm when there is no train in the station. By using principal component analysis (PCA), three contributing sources were identified on the basis of the classification of the sizes of the particles, namely railway-related mechanical wear, suspension due to the movement of trains and sparking of electric-powered components. It is concluded that the particulate matter released by individual moving trains is a key contributor to fine particles (100–500 nm) on the railway platform in a tunnel.  相似文献   

12.
Transporting more than 55 million passengers per day, buses are the main transit mode in Brazil. Most of these vehicles use diesel oil and this situation causes dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation the options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This article proposes a procedure for evaluating the performance of a recently developed Brazilian hybrid-drive technology. A simple procedure is presented to compare hybrid-drive buses with conventional diesel buses in urban operation focusing on fuel economy and the potential for reducing diesel oil consumption through the use of hybrid-drive buses. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid-drive buses would certainly exceed 20%, resulting in lower fuel costs and reduced carbon dioxide (CO2) emissions.  相似文献   

13.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland.  相似文献   

14.
This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.  相似文献   

15.
This paper assess whether a real-world second-by-second methodology that integrates vehicle activity and emissions rates for light-duty gasoline vehicles can be extended to diesel vehicles. Secondly it compares fuel use and emission rates between gasoline and diesel light-duty vehicles. To evaluate the methodology, real-world field data from two light-duty diesel vehicles are used. Vehicle specific power, a function of vehicle speed, acceleration, and road grade, is evaluated with respect to ability to explain variation in emissions rates. Vehicle specific power has been used previously to define activity-based modes and to quantify variation in fuel use and emission rates of gasoline vehicles taking into account idle, acceleration, cruise, and deceleration. The fuel use and emission rates for light-duty diesel vehicles can also be explained using vehicle specific power -based modes. Thus, the methodology enables direct comparisons for different vehicle fuels and technologies. Furthermore, the method can be used to estimate average fuel use and emission rates for a wide variety of driving cycles.  相似文献   

16.
目前我国高速铁路的日间行车能力已得到了较为充分的利用,而如何组织好高铁夜间垂直天窗与夜行列车之间的耦合关系、用好高铁夜间能力,是适应多样化市场需求的需要,也是进一步提升高铁经营效益的有效途径。对此,本文提出了动卧列车和货运动车组两种相对可行的高铁夜间运输产品,分别对其产品特征进行了分析,充分考虑高铁夜间天窗制约下两种列车的开行模式,基于市场需求提出了列车开行策略,并在充分对比两种产品的经济效益、客(货)源组织、能力分配等因素的基础上,给出了高铁夜间能力发展建议。  相似文献   

17.
We use a combination of petroleum–diesel models, datasets and tools along with biodiesel-specific corrections to create a roadway-level emissions inventory capable of evaluating spatial, temporal and scale aspects of fuel distribution options for the Midwestern US. Specifically, we compare the emissions of a year-round “low-blend” biodiesel implementation scenario, already under consideration in a variety of states, with a more strategic summer-only, interstate-only “high-blend” scenario. Our results indicate that spatial and seasonal distribution decisions do affect the overall emissions impacts of any biodiesel deployment, even those at low-blend levels. However, we also finds that changes in emissions due to biodiesel are considerably smaller than those anticipated from improvements to engine and control technologies.  相似文献   

18.
Alternative vehicle technologies promise a sustainable future by reducing carbon emissions and pollution. However, their widespread adoption tends to be slow due to high costs and uncertainties in benefits. Using a life cycle-based approach, this study calculates ownership savings and societal benefits for various alternative vehicle technologies against their baseline vehicle technology (e.g. gasoline or diesel). The assessment is performed from a developing country context – in the Philippines. Furthermore, immediate and distant future scenarios are modeled. The immediate future scenario assesses costs and benefits if the shift is to happen now, while the distant future scenario considers the effect of widespread autonomous driving and ridesharing. The results of the study echo the significant societal benefits from electric- and fuel cell-powered vehicles found in literature, but they are hindered by high ownership costs. In the immediate future, the diesel hybrid electric vehicle can potentially have both positive societal and operational costs for public transportation. For a gasoline-powered private passenger car, a simple shift to diesel, 20% biodiesel or 85% methanol can be beneficial. In the distant future, it is expected that autonomous, rideshared vehicles can potentially lure people away from driving their own vehicles, because of lower costs per passenger-kilometer while sustaining the privacy and comfort of a private car.  相似文献   

19.
At the decision-making stage, a large-scale infrastructure project is essentially a broad concept, and this means the expert analyses will differ from each other and become contested over time, leading to the emergence of rival narratives. It is only where there is a limited range of expert analyses that the bases for decision-making will remain relatively clear-cut. Over time the contested nature of expertise can significantly inhibit the construction of effective narratives, either for or against the project, and also make decision-making more complex and problematic. Decision makers may also seek greater clarification through the construction of narratives that rise above these disputed areas of expertise, and the scientific evidence becomes less important. This paper examines the changing nature of contested expertise through a comparative analysis of political decision-making between UK trunk roads policy and the case of High Speed Rail 2, through the framework of epistemic communities.  相似文献   

20.
There is a large body of research related to carbon footprint reduction in supply chains and logistics from a wide range of sectors; however the decarbonisation of freight transport is mostly explored from a single mode perspective and at a domestic/regional level. This paper takes into account a range of alternative transport modes, routes and methods with particular reference to UK wine imports from two regions: northern Italy and Southeast Australia. The research examines supply chain structures, costs and the environmental impact of international wine distribution to the UK. A number of options are evaluated to calculate the carbon footprint and sulphate emissions of alternative route, mode, method of carriage, and packaging combinations. The estimation of CO2e emissions incorporates three main elements - cargo mass, distance and method of carriage; sulphate emissions are derived from actual ship routes, engine power and operational speeds. The bottling of wine either at source or close to destination is also taken into consideration. The key findings are: there are major differences between the environmental footprint of different routeing and packaging scenarios; the international shipping leg almost always has a much larger footprint than inland transport within the UK except in the hypothetical case of the rail shipments from Italy using flexitanks. With reference to sulphate, the lowest cost scenario among the sea maximizing options is also the sulphate minimising solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号