首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Road crashes are a leading cause of death and serious injuries both developed and developing countries. Intersections are recognized as being among the most hazardous locations on the roads. Although crashes at intersections form about 35 % of the reported accidents account for about 32% of traffic‐related serious injuries and fatalities in Singapore, there is no known study that examines the factors contributing to the severity of these crashes. In this study, the ordinal probit model was applied to crash data from 1992 to 2002 to investigate the role a variety of factors play in determining the severity of intersection crashes. Our study shows that vehicle type, road type, collision type, driver's characteristics and time of day are important determinants of the severity of crashes at intersections in Singapore.  相似文献   

2.
Given the enormous losses to society resulting from large truck involved crashes, a comprehensive understanding of the effects of highway geometric design features on the frequency of truck involved crashes is needed. To better predict the occurrence probabilities of large truck involved crashes and gain direction for policies and countermeasures aimed at reducing the crash frequencies, it is essential to examine truck involved crashes categorized by collision vehicle types, since passenger cars and large trucks differ in dimensions, size, weight, and operating characteristics. A data set that includes a total of 1310 highway segments with 1787 truck involved crashes for a 4-year period, from 2004 to 2007 in Tennessee is employed to examine the effects that geometric design features and other relevant attributes have on the crash frequency. Since truck involved crash counts have many zeros (often 60–90% of all values) with small sample means and two established categories, car-truck and truck-only crashes, are not independent in nature, the zero-inflated negative binomial (ZINB) models are developed under the bivariate regression framework to simultaneously address the above mentioned issues. In addition, the bivariate negative binomial (BNB) and two individual univariate ZINB models are estimated for model validation. Goodness of fit of the investigated models is evaluated using AIC, SBC statistics, the number of identified significant variables, and graphs of observed versus expected crash frequencies. The bivariate ZINB (BZINB) models have been found to have desirable distributional property to describe the relationship between the large truck involved crashes and geometric design features in terms of better goodness of fit, more precise parameter estimates, more identified significant factors, and improved predictive accuracy. The results of BZINB models indicate that the following factors are significantly related to the likelihood of truck involved crash occurrences: large truck annual average daily traffic (AADT), segment length, degree of horizontal curvature, terrain type, land use, median type, lane width, right side shoulder width, lighting condition, rutting depth (RD), and posted speed limits. Apart from that, passenger car AADT, lane number, and indicator for different speed limits are found to have statistical significant effects on the occurrences of car-truck crashes and international roughness index (IRI) is significant for the predictions of truck-only crashes.  相似文献   

3.
A cross-median crash (CMC) is one of the most severe types of crashes in which a vehicle crosses the median and sometimes collides with opposing traffic. A study of severity of CMCs in the state of Wisconsin was conducted by Lu et al. in 2010. Discrete choice models, namely ordinal logit and probit models were used to analyze factors related to the severity of CMCs. Separate models were developed for single and multi-vehicle CMCs. Although 25 different crash, roadway, and geometric variables were used, only 3 variables were found to be statistically significant which were alcohol usage, posted speed, and road conditions. The objective of this research was to explore the feasibility of GUIDE Classification Tree method to analyze the severity of CMCs to discover if any additional information could be revealed.A dataset of CMCs in the state of Wisconsin between 2001 and 2007, used in the study by Lu et al. was used to develop three different GUIDE Classification Trees. Additionally, the effects of variable types (continuous or discrete), misclassification costs, and tree pruning characteristics on models results were also explored. The results were directly compared with discrete choice models developed in the study by Lu et al. showing that the GUIDE Classification Trees revealed new variables (median width and traffic volume) that affect CMC severity and provided useful insight on the data. The results of this research suggest that the use of Classification Tree analysis should at least be considered in conjunction with regression-based crash models to better understand factors affecting crashes. Classification Tree models were able to reveal additional information about the dependent variable and offer advantages with respect to multicollinearity and variable redundancy issues.  相似文献   

4.
Secondary crash (SC) occurrences are non-recurrent in nature and lead to significant increase in traffic delay and reduced safety. National, state, and local agencies are investing substantial amount of resources to identify and mitigate secondary crashes in order to reduce congestion, related fatalities, injuries, and property damages. Though a relatively small portion of all crashes are secondary, their identification along with the primary contributing factors is imperative. The objective of this study is to develop a procedure to identify SCs using a static and a dynamic approach in a large-scale multimodal transportation networks. The static approach is based on pre-specified spatiotemporal thresholds while the dynamic approach is based on shockwave principles. A Secondary Crash Identification Algorithm (SCIA) was developed to identify SCs on networks. SCIA was applied on freeways using both the static and the dynamic approach while only static approach was used for arterials due to lack of disaggregated traffic flow data and signal-timing information. SCIA was validated by comparison to observed data with acceptable results from the regression analysis. SCIA was applied in the State of Tennessee and results showed that the dynamic approach can identify SCs with better accuracy and consistency. The methodological framework and processes proposed in this paper can be used by agencies for SC identification on networks with minimal data requirements and acceptable computational time.  相似文献   

5.
ObjectivesEvidence concerning crash risk for older heavy vehicle drivers is sparse, making it difficult to assess if it is prudent to encourage older drivers to remain in the workforce in a climate of labour shortages. The objective of this study was to estimate annual crash rate ratios of older male heavy vehicle drivers relative to their middle aged peers.MethodsData utilized in this study includes all crashes meeting inclusion criteria involving heavy goods vehicles, categorised as rigid trucks and articulated trucks; this data was recorded by the New South Wales Roads and Traffic Authority. The exposure to the risk of a crash was represented by distance travelled for each vehicle type and year, by age of driver, as estimated by the Australian Survey of Motor Vehicle Use. Negative binomial regression modelling was applied to estimate annual crash incidence rate ratios for male drivers in various age groups.ResultsA total of 26,146 crashes occurred in New South Wales during 1999–2006, involving a total of 54,191 vehicles; removing observations that did not meet the inclusion criteria, 19,736 observations remained representing 12,501 crashes. For rigid trucks, the incidence rate ratio for drivers aged 65+ years, compared to 45–54 year olds, was 0.74 (95% CI 0.51, 0.98). For articulated trucks, the annual crash incidence rate ratio for drivers aged 65+ years compared to 45–54 year olds was 1.4 (95% CI 0.96, 1.9), and that for drivers aged 55–64 years compared to 45–54 year olds was 1.1 (95% CI 0.83, 1.3).ConclusionsOlder male professional drivers of heavy goods vehicles have lower risk of crashes in rigid vehicles, possibly due to accrued driving experience and self-selection of healthy individuals remaining in the workforce. Thus, encouraging these drivers to remain in the workforce is appropriate in the climate of labour shortages, as this study provides evidence that to do so would not endanger road safety.  相似文献   

6.
There is an increasing interest in technology-based solutions that can assist drivers in reducing their risk of involvement in road crashes. Previous studies showed that driving events produced by in-vehicle data recorders (IVDR) are applicable for identification of unsafe driving patterns, while combined examinations of driving events and road infrastructure characteristics are rare. This study explored the relationship between the IVDR-driving events, road characteristics and crashes, to examine a potential of the events for predicting crashes and identification of high-risk locations on the road network. The study database included 3500 segments of the interurban roads in Israel, for which the automatically produced IVDR events were matched with road infrastructure characteristics and crashes. Negative-binomial regression models were adjusted for the relationships between road characteristics and driving events, and subsequently, between events and crashes, given the exposure. Significant impacts were found, yet various event types showed different relations to the infrastructure characteristics and different effects on crashes, on various road types. Better road conditions were associated with a decrease in “braking” events and an increase in the “speed alert” events, where road layout constraints and junction proximity were associated with an opposite effect on events. “Braking” and total events showed better potential for predicting crashes on single-carriageway roads, with a positive link to crashes, where for other road types the “speed alert” events were stronger related to crashes, but with a negative link. The heterogeneity of findings indicates a need in further research of the above relationship, with a particular focus on definitions of driving events produced by the IVDR or other technologies.  相似文献   

7.
Traffic crashes occurring on freeways/expressways are considered to relate closely to previous traffic conditions, which are time-varying. Meanwhile, most studies use volume/occupancy/speed parameters to predict the likelihood of crashes, which are invalid for roads where the traffic conditions are estimated using speed data extracted from sampled floating cars or smart phones. Therefore, a dynamic Bayesian network (DBN) model of time sequence traffic data has been proposed to investigate the relationship between crash occurrence and dynamic speed condition data. Moreover, the traffic conditions near the crash site were identified as several state combinations according to the level of congestion and included in the DBN model. Based on 551 crashes and corresponding speed information collected on expressways in Shanghai, China, DBN models were built with time series speed condition data and different state combinations. A comparative analysis of the DBN model using flow detector data and a static Bayesian network model was also conducted. The results show that, with only speed condition data and nine traffic state combinations, the DBN model can achieve a crash prediction accuracy of 76.4% with a false alarm rate of 23.7%. In addition, the results of transferability testing imply that the DBN models are applicable to other similar expressways with 67.0% crash prediction accuracy.  相似文献   

8.
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to date. With the active development of next generation crash warning systems based on connected vehicle technologies, this study explored possible interface designs for motorcycle crash warning systems and evaluated their rider acceptance and effectiveness in a connected vehicle context. Four prototype warning interface displays covering three warning mode alternatives (auditory, visual, and haptic) were designed and developed for motorcycles. They were tested on-road with three connected vehicle safety applications - intersection movement assist, forward collision warning, and lane departure warning - which were selected according to the most impactful crash types identified for motorcycles. Combined auditory and haptic displays showed considerable promise for implementation. Auditory display is easily implemented given the adoption rate of in-helmet auditory systems. Its weakness of presenting directional information in this study may be remedied by using simple speech or with the help of haptic design, which performed well at providing such information and was also found to be attractive to riders. The findings revealed both opportunities and challenges of visual displays for motorcycle crash warning systems. More importantly, differences among riders of three major motorcycle types (cruiser, sport, and touring) in terms of rider acceptance of a motorcycle crash warning system were revealed. Based on the results, recommendations were provided for an appropriate crash warning interface design for motorcycles and riders in a connected vehicle environment.  相似文献   

9.
This paper examines the impact of personal and environmental characteristics on severity of injuries sustained in pedestrian–vehicle crashes using a generalized ordered probit model. The data covers 2000–2004 of pedestrian–vehicle crashes taken from police incident reports for Baltimore City and supplemented with local land use, urban form and transportation information specific to the individual crash locations. The results on personal and behavioral variables confirm previous findings. Women pedestrians involved in crashes tend to be injured less frequently than their male counterparts; children have an increased likelihood of sustaining injuries and older persons are more likely to be fatally injured. Pedestrians who cross against the traffic signal, are not in a crosswalk and are involved in a crash after dark are associated with greater injury risk. Of the built environment policy variables of interest, transit access and greater pedestrian connectivity, such as central city areas, are significant and negatively associated with injury severity. These results suggest that the environmental conditions should be given more scrutiny and be an important consideration when evaluating and planning for pedestrian safety.  相似文献   

10.
To reduce injuries in road crashes, better understanding is needed between the relationship of injury severity and risk factors. This study seeks to identify the contributing factors affecting crash severity with broad considerations of driver characteristics, roadway features, vehicle types, pedestrian characteristics and crash characteristics using an ordered probit model. It also explores how the interaction of these factors will affect accident severity risk. Three types of accidents were investigated: two-vehicle crashes, single vehicle crashes and pedestrian accidents. The reported crash data in Singapore from 1992 to 2001 were used to illustrate the process of parameter estimation. Several factors such as vehicle type, road type, collision type, location type, pedestrian age, time of day of accident occurrence were found to be significantly associated with injury severity. It was also found that injury severity decreases over time for the three types of accident investigated.  相似文献   

11.
Pedestrians and cyclists are vulnerable road users. They are at greater risk for being killed in a crash than other road users. The percentage of fatal crashes that involve a pedestrian or cyclist is higher than the overall percentage of total trips taken by both modes. Because of this risk, finding ways to minimize problematic street environments is critical. Understanding traffic safety spatial patterns and identifying dangerous locations with significantly high crash risks for pedestrians and cyclists is essential in order to design possible countermeasures to improve road safety. This research develops two indicators for examining spatial correlation patterns between elements of the built environment (intersections) and crashes (pedestrian- or cyclist-involved). The global colocation quotient detects the overall connection in an area while the local colocation quotient identifies the locations of high-risk intersections. To illustrate our approach, we applied the methods to inspect the colocation patterns between pedestrian- or cyclist-vehicle crashes and intersections in Houston, Texas and we identified among many intersections the ones that significantly attract crashes. We also scrutinized those intersections, discussed possible attributes leading to high colocation of crashes, and proposed corresponding countermeasures.  相似文献   

12.
Gaining a better understanding of the factors that affect the likelihood of a vehicle crash has been an area of research focus for many decades. However, in the absence of detailed driving data that would help improve the identification of cause and effect relationships with individual vehicle crashes, most researchers have addressed this problem by framing it in terms of understanding the factors that affect the frequency of crashes – the number of crashes occurring in some geographical space (usually a roadway segment or intersection) over some specified time period. This paper provides a detailed review of the key issues associated with crash-frequency data as well as the strengths and weaknesses of the various methodological approaches that researchers have used to address these problems. While the steady march of methodological innovation (including recent applications of random parameter and finite mixture models) has substantially improved our understanding of the factors that affect crash-frequencies, it is the prospect of combining evolving methodologies with far more detailed vehicle crash data that holds the greatest promise for the future.  相似文献   

13.
Weaving segments are potential recurrent bottlenecks which affect the efficiency and safety of expressways during peak hours. Meanwhile, they are one of the most complicated segments, since on- and off-ramp traffic merges, diverges and weaves in the limited space. One effective way to improve the safety of weaving segments is to study crash likelihood using real-time crash data with the objective of, identifying hazardous conditions and reducing the risk of crashes by Intelligent Transportation Systems (ITS) traffic control. This study presents a multilevel Bayesian logistic regression model for crashes at expressway weaving segments using crash, geometric, Microwave Vehicle Detection System (MVDS) and weather data. The results show that the mainline speed at the beginning of the weaving segments, the speed difference between the beginning and the end of weaving segment, logarithm of volume have significant impacts on the crash risk of the following 5–10 min for weaving segments. The configuration is also an important factor. Weaving segment, in which there is no need for on- or off-ramp traffic to change lane, is with high crash risk because it has more traffic interactions and higher speed differences between weaving and non-weaving traffic. Meanwhile, maximum length, which measures the distance at which weaving turbulence no longer has impact, is found to be positively related to the crash risk at the 95% confidence interval. In addition to traffic and geometric factors, wet pavement surface condition significantly increases the crash ratio by 77%. The proposed model along with ITS, e.g., ramp metering, Dynamic Message Sign (DMS), and high friction surface treatment can be used to enhance the safety of weaving segments in real-time.  相似文献   

14.
Reduced visibility conditions increase both the probability of rear-end crash occurrences and their severity. Crash warning systems that employ data from connected vehicles have potential to improve vehicle safety by assisting drivers to be aware of the imminent situations ahead in advance and then taking timely crash avoidance action(s). This study provides a driving simulator study to evaluate the effectiveness of the Head-up Display warning system and the audio warning system on drivers’ crash avoidance performance when the leading vehicle makes an emergency stop under fog conditions. Drivers’ throttle release time, brake transition time, perception response time, brake reaction time, minimum modified time-to-collision, and maximum brake pedal pressure are assessed for the analysis. According to the results, the crash warning system can help decrease drivers’ reaction time and reduce the probability of rear-end crashes. In addition, the effects of fog level and drivers’ characteristics including gender and age are also investigated in this study. The findings of this study are helpful to car manufacturers in designing rear-end crash warning systems that enhance the effectiveness of the system’s application under fog conditions.  相似文献   

15.
The primary objective of this study was to evaluate the risks of crashes associated with the freeway traffic flow operating at various levels of service (LOS) and to identify crash-prone traffic conditions for each LOS. The results showed that the traffic flow operating at LOS E had the highest crash potential, followed by LOS F and D. The traffic flow operating at LOS B and A had the lowest crash potential. For LOS A and B, the vehicle platoon and abrupt change in vehicle speeds were major contributing factors to crash occurrences. For LOS C, crash risks were correlated with lane-change maneuvers, speed variation, and small headways in traffic. For LOS D, crash risks increased with an increase in the temporal change in traffic flow variables and the frequency of lane-change maneuvers. For LOS E, crash risks were mainly affected by high traffic volumes and oscillating traffic conditions. For LOS F, crash risks increased with an increase in the standard deviation of flow rate and the frequency of lane-change maneuvers. The findings suggested that the mechanism of crashes were quite different across various LOS. A Bayesian random-parameters logistic regression model was developed to identify crash-prone traffic conditions for various LOS. The proposed model significantly improved the prediction performance as compared to the conventional logistic regression model.  相似文献   

16.
This paper examines pedestrian anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. Pedestrian crashes involving pedestrians walking along streets (i.e. with their backs to traffic or facing traffic) have been overlooked in literature. Although this is not the most frequent type of crash, the crash consequence to pedestrians is a safety concern. Combining Taiwan A1A2 police‐reported accident data and data from the National Health Insurance Database from years 2003–2013, this paper examines anatomical injuries and crash characteristics in back‐to‐traffic and facing‐traffic crashes. There were a total of 830 and 2267 pedestrian casualties in back‐to‐traffic and facing‐traffic crashes respectively. The injuries sustained by pedestrians and crash characteristics of these two crash types were compared with those of other crossing types of crashes (nearside crash, nearside dart‐out crash, offside crash, and offside dart‐out crash). Odds of various injuries to body regions were estimated using logistic regressions. Key findings include that the percentage of fatalities in back‐to‐traffic crashes is the highest; logistic models reveal that pedestrians in back‐to‐traffic crashes sustained more head, neck, and spinal injuries than did pedestrians in other crash types, and unlit darkness and non‐built‐up roadways were associated with an increased risk of pedestrian head injuries. Several crash features (e.g. unlit darkness, overtaking manoeuvres, phone use by pedestrians and drivers, and intoxicated drivers) are more frequently evident in back‐to‐traffic crashes than in other types of crashes. The current research suggests that in terms of crash consequence, facing traffic is safer than back to traffic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper presents a safety-based path finding methodology for older drivers and bicyclists in an urban area. The paths are estimated based on costs consisting of both safety and travel time. Safety is evaluated against potential risk of a crash involving an older driver (or a bicyclist) with other vehicles present on the road. To accomplish this, simple formulations are developed for safety indicators of streets and intersections, which are actually generic irrespective of the type of road user. Traffic attributes such as speed and density, driver attributes such as perception-reaction time and street attributes of length and tire-to-road friction coefficient are taken into account in building the safety indicators. Thus, the safety indicators do not necessarily require historical crash data which may or may not be available during path finding. Subsequently, a multi-objective shortest path algorithm is presented that identifies the best path (the non-inferior path) from amongst a set of selected safest paths with due considerations to travel time incurred on each. A simple application example of the proposed methodology is demonstrated on an existing street network system from the City of College Station, Texas. The contributions of this research are twofold – first, the safety indicators can be used by planners in determining high crash potential sites – streets and/or intersections – and second, the safety-based path finding methodology developed in this paper can be integrated with modern day route planning devices and tools in guiding older drivers and bicyclists within an Intelligent Transportation Systems framework.  相似文献   

19.
The primary objective of this paper is to provide a statistical relationship between traffic conflicts estimated from microsimulation and observed crashes in order to evaluate safety performance, in particular the effect of countermeasures. A secondary objective is to assess the effect of conflict risk tolerance and number of simulation runs on the estimates of countermeasure effects so obtained. Conflicts were simulated for a sample of signalized intersections from Toronto, Canada, using VISSIM microscopic traffic simulation and several crash–conflict relationships were obtained. A separate sample of treated intersections from Toronto was used to compare countermeasure effects from the integrated crash–conflict expression to a conventional, but rigorous crash-based Empirical Bayes before-and-after analysis that was already done, with the results published, for the same sites and treatment. The countermeasure considered for this investigation involved changing the left turn signal operation for the treated intersection sample from permissive to protected-permissive. The results support the view that countermeasure effects can be estimated reliably from conflicts derived from microsimulation, and more so when a suitable number of simulation runs and conflict tolerance thresholds are used in the crash–conflict relationship.  相似文献   

20.
The current study contributes to the existing injury severity modeling literature by developing a multivariate probit model of injury severity and seat belt use decisions of both drivers involved in two-vehicle crashes. The modeling approach enables the joint modeling of the injury severity of multiple individuals involved in a crash, while also recognizing the endogeneity of seat belt use in predicting injury severity levels as well as accommodating unobserved heterogeneity in the effects of variables. The proposed model is applied to analyze the injury severity of drivers involved in two-vehicle road crashes in Denmark.The empirical analysis provides strong support for the notion that people offset the restraint benefits of seat belt use by driving more aggressively. Also, men and those individuals driving heavy vehicles have a lower injury risk than women and those driving lighter vehicles, respectively. At the same time, men and individuals driving heavy vehicles pose more of a danger to other drivers on the roadway when involved in a crash. Other important determinants of injury severity include speed limit on roadways where crash occurs, the presence (or absence) of center dividers (median barriers), and whether the crash involves a head-on collision. These and other results are discussed, along with implications for countermeasures to reduce injury severities in crashes. The analysis also underscores the importance of considering injury severity at a crash level, while accommodating seat belt endogeneity effects and unobserved heterogeneity effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号