首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对某重卡前轴轮毂在设计工况下的静强度性能进行了有限元分析,并对该轮毂结构进行了轻量化设计.采用拓扑优化方法,以最大设计空间为优化的基结构,以重量最轻为目标函数,以结构的静强度性能为约束条件,进行了优化迭代计算.轻量化设计后,减轻了轮毂的重量,且轻量化结构满足强度要求.  相似文献   

2.
对某重型车桥桥壳在设计工况下的静强度性能进行了有限元分析,并对该桥壳结构进行了轻量化设计。采用拓扑优化方法,以初始设计作为优化的基结构,以重量最轻为目标函数,以结构的静强度性能为约束条件,进行了优化迭代计算。轻量化设计后,减轻了桥壳的重量,且轻量化结构满足强度要求。  相似文献   

3.
对某重卡下支架在设计工况下的静强度性能进行了有限元分析,并对该下支架结构进行了轻量化设计。采用拓扑优化方法,以最大设计空间为优化的基结构,以重量最轻为目标函数,以结构的静强度性能为约束条件,进行了优化迭代计算。轻量化设计后,减轻了下支架的重量,且轻量化结构满足强度要求。  相似文献   

4.
对某重型车桥桥壳在设计工况下的静强度性能进行了有限元分析,并对该桥壳结构进行了轻量化设计.采用拓扑优化方法,以初始设计作为优化的基结构,以重量最轻为目标函数,以结构的静强度性能为约束条件,进行了优化迭代计算.轻量化设计后,减轻了桥壳的重量,且轻量化结构满足强度要求.  相似文献   

5.
使用1 800 MPa级热成形钢代替1 500 MPa级热成形钢,通过减薄料厚对车门防撞梁进行轻量化设计。在1 500 MPa级车门防撞梁的生产模具上进行相同厚度的1 800 MPa级车门防撞梁的试制,通过三点弯曲试验进行零件抗弯曲性能评价。根据试验条件及试验数据建立仿真分析模型并进行材料卡标定。根据公式对车门防撞梁进行减薄设计,对减薄的方案进行三点弯曲仿真分析,仿真分析结果与1 500 MPa级的基础方案的三点弯曲试验结果进行对比,得出减薄方案的抗弯曲性能与基础方案相当。通过搭载整车的侧面碰撞仿真分析,进一步验证了轻量化方案的可行性。1 800 MPa级热成形钢用于车门防撞梁的设计可实现12.5%的轻量化效果。  相似文献   

6.
汽车开发过程中,为降低整车质量,节约材料成本,企业会对提出轻量化要求。研发质量轻且性能好的零件,是设计师所要考虑的重要问题。后纵臂是汽车底盘重要零件,对后纵臂进行尺寸优化,并综合考虑零件材料性能,提出满足强度性能要求且质量更轻的设计方案。根据方案思路重新设计零件,对新方案及旧方案进行仿真计算,对比方案更改前后强度性能差异,从而判断轻量化方案是否可以实施。  相似文献   

7.
分析了PMMA材料特性及其在汽车轻量化方面的应用前景。以PMMA材料在车门侧窗玻璃上的应用为例,从材料性能和产品性能两方面进行了试验和仿真分析。通过抗磨性试验、人头模拟冲击试验和抗冲击试验表明,加涂层PMMA玻璃符合标准规定;通过力学性能、热学性能和声学性能试验表明,PMMA侧窗玻璃产品能够在满足性能要求的同时减轻车身质量。  相似文献   

8.
以某车型为例,对该车门进行过开强度分析及试验。运用Hypermesh软件建立车门有限元模型,并对车门过开工况进行仿真分析得出车门位移数据和附件受力情况;提出车门过开试验方案,完成车门过开性能测试,得出试验推论;对比仿真结果和试验数据,验证有限元模型的准确性与试验方案的可行性。  相似文献   

9.
本文以汽车前门作为研究对象,以碳纤维结构设计及铺层形式进行研究。经过仿真分析表明,碳纤维前车门的模态、刚度、强度都得到了明显的提升,在满足性能要求的基础上,重量得到了减轻,实现了轻量化的目的。  相似文献   

10.
为了分析汽车车门的安全性能,提高乘车舒适性,实现车门轻量化,研究车门内板厚度对车门模态的影响。以某汽车前门为研究对象,在有限元分析软件中建立车门的有限元模型,进行汽车车门模态仿真分析,建立内板厚度不同的车门模型,根据内板厚度,划分为5种工况,分别进行模态仿真分析。结果表明,随着内板厚度增加,车门固有频率逐渐增大,车门模态振型规律性变化,对车门安全性、乘车舒适性和汽车轻量化研究具有指导意义。  相似文献   

11.
长玻纤增强聚丙烯(LGFPP)是纤维增强聚合物领域的一种新型轻量化材料。以LGFPP分别替代短玻纤增强工程塑料PA66-GF30和PBT-GF30用于汽车车门拉手底座和雾灯壳体的制造,对零部件的尺寸稳定性和其它各项性能进行试验,并对减重效果和成本进行了分析。得出的结论是,LGFPP在完全满足成型要求和各项性能要求的同时,还在轻量化和降低成本等方面取得了明显的效果,在汽车零部件领域具有广泛的应用前景。  相似文献   

12.
减震器支座时悬挂系统重要的部件,为了提升某减震器下支座设计的可靠性,基于有限元技术对其进行静强度分析,分析结果表明其最大应力均低于材料屈服。与此同时为了达到轻量化的目的,基于相对密度法对其进拓扑优化分析,获取了其单元密度等值面图,最终得到了最佳优化方案,并且满足其强度性能要求。  相似文献   

13.
根据项目组的要求,对某轻型载货车车架进行轻量化验证分析。文章基于有限元法,运用Hypermesh、Nastran等有限元计算分析软件,建立车架有限元模型,对车架进行模态及扭转模量分析,在垂向弯曲工况、紧急转弯工况、过坑扭转工况、紧急制动工况四种恶劣工况模式下对车架进行强度校核分析,通过对优化前后分案的分析对比,优化后方案的模态、扭转模量与优化前相当,强度方面优于优化前方案。分析结果表明,新方案模型可以替代原方案模型,轻量化设计成功减重27Kg,约为优化前质量的9.7%。  相似文献   

14.
为了校核某悬置系统是否满足性能要求,采用有限元技术对其进行极限强度分析,得到了其在垂向跳动工况、紧急制动工况和紧急转弯工况时的应力分布,均在其材料屈服范围之内。再对其进行模态分析,分析表明其前三阶模态频率均高于发动机的二阶点火激振频率,因此该悬置系统能够满足强度和模态设计要求。  相似文献   

15.
结合汽车内饰材料开发实践,阐述了以NVH性能为目标的汽车内饰轻量化开发工程控制方法及机理。结合某乘用车车型开发,以前壁板隔音垫与车门吸声材料的轻量化设计验证为例,提出一种内饰材料轻量化的NVH性能开发方法。通过SEA仿真和道路测试,全面评估和验证了其优化效果。在质量减轻高于50%情况下,显著提升了行驶工况中的车内声品质。  相似文献   

16.
文章通过进行目标设定、结构优化、有限元分析、试验验证,对某轻型卡车膨胀水箱支架开展了轻量化设计。在目标设定阶段,便明确了强度、模态为该支架的主要性能,并提出具体的设计目标。方案通过将支架断面从开口改进为封闭,大大提高了材料的利用率。有限元计算和试验验证结果证明,该支架的轻量化方案满足整车使用要求。最终,在满足使用要求前提下,该支架的轻量化设计实现了降重0.9kg,降幅53%的效果。  相似文献   

17.
驾驶室前悬连接支架是连接驾驶室与驾驶室悬置的重要部件,其结构强度关乎车辆运行及翻转过程的安全问题。文章利用有限元分析软件Hyperworks对某重型卡车驾驶室前悬连接支架进行了多工况分析,验证其结构强度要求;同时采用拓扑优化方法,以重量最轻为目标函数,以结构的静强度性能为约束条件,进行了优化迭代计算,实现了结构的轻量化同时满足结构强度要求。  相似文献   

18.
为了满足纯电动汽车车身的轻量化需求,采用新型2 000 MPa热成形钢替代传统22Mn B5进行车门防撞梁的轻量化设计。为验证2 000 MPa热成形车门防撞梁的应用可行性,采用LS-DYNA软件对整车进行侧面碰撞仿真分析,结果显示碰撞侵入量、侵入速度和关键零部件的塑性应变均符合设计要求。经热冲压仿真分析,2 000 MPa热成形车门防撞梁符合工艺要求,软模和硬模阶段研究了不同的加热设备和工艺参数对2 000 MPa热成形车门防撞梁组织和拉伸力学性能的影响,结果显示加热温度930℃,保温时间300 s和330 s,转移时间约12 s,可实现热成形后的抗拉强度≥2 000 MPa的性能目标。将前后车门防撞梁分别置于万能试验机上进行零件三点弯曲性能检测,结果显示前车门防撞梁三点弯峰值力大于25 k N,后车门防撞梁三点弯峰值力大于29 k N,远高于10.01 k N的设计目标值。经过2 000 MPa热成形车门防撞梁和车门内板的点焊工艺参数优化和连接设计优化,满足了前后车门系统的开闭耐久性能要求。在保证整车侧碰安全性能的情况下,2 000 MPa热成形车门防撞梁比采用传统22Mn B5质量减轻11.7%,实现显著的轻量化效果。  相似文献   

19.
对某车型后牵引钩总成的重量较重、成本较高以及不满足可见高度要求的问题进行了分析。根据后牵引钩总成常见的结构形式及优缺点,研究了2种轻量化方案,并从多个方面进行了对比分析;然后利用有限元对新方案进行了5种工况的强度分析,确定将焊接在后地板备胎坑处的方案作为最佳轻量化方案;最后,通过2台车的后牵引钩实验验证了该轻量化方案满足实验要求。优化方案实现单车减重1.18kg,降本10.68元,且满足可见高度要求。  相似文献   

20.
文章以进行轻量化改装设计的某工程车为研究对象,建立了工程车的白车身有限元模型,并对其进行模态仿真和弯扭工况仿真分析。仿真结果表明车身性能满足轻量化设计的要求。在此基础上,选取99个重要车身零部件,仿真分析其对车身性能的影响程度,在综合考虑生产实际和价格成本的基础上,制定并验证轻量化设计方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号