首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.  相似文献   

2.
This study proposes a framework to explore the concepts of exposure, vulnerability and connectivity in EU road network and to assess the potential transportation infrastructure sensitivities towards Sea-Level Rise (SLR) and storm surges. The magnitude and significance of impacts were determined and knowledge of network robustness was built up based on existing climate data and on future trends. Various spatial databases were integrated and a four-stage transport model was used to explore the likely impacts of network degradation. The pattern of the network was assessed via both node- and link-based measurements, where different road databases, namely TRANS-TOOLS and Tele Atlas/TomTom, were employed in order to analyze the impact of spatial resolution within network connectivity analyses. This general framework developed for European Union, was tested on a specific and articulated case study area; namely, the north-east coastal region of Spain. The research conducted, yielded useful methods for the analysis of network vulnerability, where impacts are more significant in regional accessibility patterns. Accessibility indicators at the regional level changed drastically, with some regions showing up to a 26% decrease. According to the results of network connectivity indicators, the changes in network topology have reduced the number of alternative routes and placed more pressure on the transport system. The implementation of this framework and quantitative assessment methodologies outlined in this paper could be employed to assist policy makers to recognize the opportunities that may arise or diminish the adverse effects.  相似文献   

3.
Robust public transport networks are important, since disruptions decrease the public transport accessibility of areas. Despite this importance, the full passenger impacts of public transport network vulnerability have not yet been considered in science and practice. We have developed a methodology to identify the most vulnerable links in the total, multi-level public transport network and to quantify the societal costs of link vulnerability for these identified links. Contrary to traditional single-level network approaches, we consider the integrated, total multi-level PT network in the identification and quantification of link vulnerability, including PT services on other network levels which remain available once a disturbance occurs. We also incorporate both exposure to large, non-recurrent disturbances and the impacts of these disturbances explicitly when identifying and quantifying link vulnerability. This results in complete and realistic insights into the negative accessibility impacts of disturbances. Our methodology is applied to a case study in the Netherlands, using a dataset containing 2.5 years of disturbance information. Our results show that especially crowded links of the light rail/metro network are vulnerable, due to the combination of relatively high disruption exposure and relatively high passenger flows. The proposed methodology allows quantification of robustness benefits of measures, in addition to the costs of these measures. Showing the value of robustness, our work can support and rationalize the decision-making process of public transport operators and authorities regarding the implementation of robustness measures.  相似文献   

4.
As one of the devastating natural disasters, landslide may induce significant losses of properties and lives area-wide, and generate dramatic damages to transportation network infrastructure. Accessing the impacts of landslide-induced disruptions to roadway infrastructure can be extremely difficult due to the complexity of involved impact factors and uncertainties of vulnerability related events. In this study, a data-driven approach is developed to assess landslide-induced transportation roadway network vulnerability and accessibility. The vulnerability analysis is conducted by integrating a series of static and dynamic factors to reflect the landslide likelihood and the consequences of network accessibility disruptions. The analytical hierarchy process (AHP) model was developed to assess and map the landslide likelihood. A generic vulnerability index (VI) was calculated for each roadway link in the network to identify critical links. Spatial distributions of landslide likelihood, consequences of network disruptions, and network vulnerability degrees were fused and analyzed. The roadway network on Oahu Island in Hawaii is utilized to demonstrate the effectiveness of the proposed approach with all the geo-coded information for its network vulnerability analysis induced by area-wide landslides. Specifically, the study area was classified into five categories of landslide likelihood: very high, high, moderate, low, and stable. About 34% of the study area was assigned as the high or very high categories. The results of network vulnerability analyses highlighted the importance of three highway segments tunnel through the Ko‘olau Range from leeward to windward, connecting Honolulu to the windward coast including the Pali highway segment, Likelike highway segment, and Interstate H-3 highway segment. The proposed network vulnerability analysis method provides a new perspective to examine the vulnerability and accessibility of the roadway network impacted by landslides.  相似文献   

5.
Hyun Kim  Yena Song 《Transportation》2018,45(4):1075-1100
The growth of a city or a metropolis requires well-functioning transit systems to accommodate the ensuing increase in travel demand. As a result, mass transit networks have to develop and expand from simple to complex topological systems over time to meet this demand. Such an evolution in the networks’ structure entails not only a change in network accessibility, but also a change in the level of network reliability on the part of stations and the entire system as well. Network accessibility and reliability are popular measures that have been widely applied to evaluate the resilience and vulnerability of a spatially networked system. However, the use of a single measure, either accessibility or reliability, provides different results, which demand an integrated measure to evaluate the network’s performance comprehensively. In this paper, we propose a set of integrated measures, named ACCREL (Integrated Accessibility and Reliability indicators) that considers both metrics in combination to evaluate a network’s performance and vulnerability. We apply the new measures for hypothetical mass transit system topologies, and a case study of the metro transit system in Seoul follows, highlighting the dynamics of network performance with four evolutionary stages. The main contribution of this study lies in the results from the experiments, which can be used to inform how transport network planning can be prepared to enhance the network functionality, thereby achieving a well-balanced, accessible, and reliable system. Insights on network vulnerability are also drawn for public transportation planners and spatial decision makers.  相似文献   

6.
A GIS-based planning approach to locating urban rail terminals   总被引:1,自引:0,他引:1  
This paper develops a flexible GIS-based methodology for evaluating the potential locations of terminal park-and-ride facilities along urban rail lines. The methodology differs from political-based approaches and traditional travel demand modeling in its use of an objective measure of accessibility to gage the suitability of a site. The methodology begins by constructing an index of derived demand for rail usage based on the local demographics. Principal component analysis (PCA) is used as a means of constructing an index of derived demand consistent with other passenger surveys. Next, trade areas or commutersheds are calculated for each candidate park-and-ride location based on realistic measures of accessibility and network based drive times, taking into account competition among candidates for riders. Following the analysis, the candidate locations and their commutersheds are delineated and visualized in the GIS environment. In summary, application of this method produces a site-specific suitability index that may be used to rank and compare potential park-and-ride locations. We illustrate how our approach fits within the context of the larger-scale corridor study as a complimentary means of refining the location of urban rail stations. The analysis uses the proposed rail system for Columbus Ohio as a case study. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Network risk assessment takes into consideration the probability that adverse events occur and the impacts of such disruptions on network functionality. In the context of transport networks, most studies have focused on vulnerability, the reduction in performance indicators given that a disruption occurs. This study presents and applies a method to explicitly account for exposure in identifying and evaluating link criticality in public transport networks. The proposed method is compared with conventional measures that lack exposure information. A criticality assessment is performed by accounting for the probability of a certain event occurring and the corresponding welfare loss. The methodology was applied for a multi-modal public transport network in the Netherlands where data concerning disruptions was available. The results expose the role of exposure in determining link criticality and overall network vulnerability. The findings demonstrate that disregarding exposure risks prioritizing links with high passenger volumes over links with a higher failure probability that are significantly more critical to network performance. The inclusion of exposure allows performing a risk analysis and has consequences on assessing mitigation measures and investment priorities.  相似文献   

8.
Road pricing policies are gaining prominence in EU countries. These policies have positive impacts leading to mobility patterns which are socially and environmentally more desirable, but they also have negative impacts. One negative impact is to be found in regional accessibility, due to the increase in generalized transport costs. This study presents a methodology based on accessibility indicators and GIS to assess the accessibility impacts of a road pricing policy. The methodology was tested for the Spain’s road network considering two road pricing scenarios. It enables not only the more penalized regions to be identified but also negative road pricing spillover effects between regions. These effects are measured in terms of accessibility changes occurring in one region produced by charges implemented in another region. Finally, the study of accessibility disparities (by calculating inequality indexes for each of the scenarios considered), provides policymakers with useful information regarding the impact of road pricing policies from the point of view of territorial cohesion.  相似文献   

9.
To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links.  相似文献   

10.
Evaluating locational accessibility to the US air transportation system   总被引:2,自引:0,他引:2  
Although there are hundreds of airports that support commercial air passenger traffic in the United States (US), not all areas are equivalently served by the commercial air transportation system. Locations in the US differ with respect to their level of access to the commercial air network and their overall accessibility within the system. Given the complexity of the domestic commercial air passenger network and supporting infrastructure, past research has only been able to provide a limited assessment of locational accessibility within the United States. To address these complexities, this paper proposes a new metric that incorporates measures of access to air transport as well as accessibility within air transportation networks. Using a comprehensive dataset on scheduled airline service, the developed approach is then applied to the US domestic commercial passenger air transportation network to explore geographic differentials in accessibility. Results suggest marked differences between core-based statistical areas throughout the US.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号