首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main purpose of this paper is to develop a bi-level pricing model to minimize the CO2e emissions and the total travel time in a small road network. In the lower level of the model, it is assumed that users of the road network find a dynamic user equilibrium which minimizes the total costs of those in the system. For the higher level of the model, different road toll strategies are applied in order to minimize the CO2e emissions. The model has been applied to an illustrative example. It shows the effects on traffic flows, revenues, total time and CO2e emissions for different numbers of servers collecting tolls and different pricing strategies over a morning peak traffic period. The results show that the CO2e emissions produced can be significantly affected by the number of servers and the type of toll strategy employed. The model is also used to find the best toll strategy when there is a constraint on the revenue that is required to be raised from the toll and how this affects the emissions produced. Further runs compare strategies to minimize the CO2e emissions with those that minimize total travel time in the road system. In the illustrative example, the results for minimizing CO2e emissions are shown to be similar to the results obtained from minimizing the total travel time.  相似文献   

2.
This paper puts together an analytical formulation to compute optimal tolls for multi-class traffic. The formulation is comprised of two major modules. The first one is an optimization component aimed at computing optimal tolls assuming a Stackelberg game in which the toll agency sets the tolls, and the equilibrating traffic plays the role of the followers. The optimization component is supported by a set of cost models that estimate the externalities as a function of a multivariate vector of traffic flows. These models were estimated using Taylor series expansions of the output obtained from traffic simulations of a hypothetical test case. Of importance to the paper is the total travel time function estimated using this approach that expresses total travel time as a multivariate function of the traffic volumes. The formulation presented in the paper is then applied to a variety of scenarios to gain insight into the optimality of current toll policies. The optimal tolls are computed for two different cases: independent tolls, and tolls proportional to passenger car equivalencies (PCE).The numerical results clearly show that setting tolls proportional to PCEs leads to lower values of welfare that are on average 15% lower than when using independent tolls, though, in some cases the total welfare could be up to 33% lower. This is a consequence of two factors. First, the case of independent tolls has more degrees of freedom than the case of tolls proportional to PCEs. Second, tolls proportional to PCEs do not account for externalities other than congestion, which is likely to lead to lower welfare values.The analytical formulations and numerical results indicate that, because the total travel time is a non-linear function of the traffic volumes, the marginal social costs and thus the optimal congestion tolls also depend on the traffic volumes for each vehicle class. As a result of this, for the relatively low volumes of truck traffic observed in real life, the optimal congestion tolls for trucks could indeed be either lower or about the same as for passenger cars. This stand in sharp contrast with what is implied in the use of PCEs, i.e., that the contribution to congestion are constant. This latter assumption leads to optimal truck congestion tolls that are always proportional to the PCE values.The comparison of the toll ratios (truck tolls divided by passenger car tolls) for both observed and optimal conditions suggests that the tolls for small trucks are about the right level, maybe a slightly lower than optimal. However, the analysis of the toll ratio for large trucks seems to indicate a significant overcharge. The estimates show that the average observed toll ratio for large trucks is even higher than the maximum optimal toll ratio found in the numerical experiments. This suggests that the tolls for large trucks are set on the basis of revenue generation principles while the passenger car tolls are being set based on a mild form of welfare maximization. This leads to a suboptimal cross-subsidization of passenger car traffic in detriment of an important sector of the economy.  相似文献   

3.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results.  相似文献   

5.
This paper compares performances of cordon- and area-road pricing regimes on their social welfare benefit and equity impact. The key difference between the two systems is that the cordon charges travellers per crossing whereas the area scheme charges the travellers for an entry permit (e.g. per day). For the area licensing scheme, travellers may decide to pay or not to pay the toll depending on the proportion between their travel costs for the whole trip-chains during a valid period of the area license and the toll level. A static trip-chain equilibrium based model is adopted in the paper to provide a better evaluation of the area-based tolls on trip-chain demands. The paper proposes a modified Gini coefficient taking in account assumptions of revenue re-distribution to measure the spatial equity impact. The model is tested with the case study of the Utsunomiya city in Japan. The results demonstrate a higher level of optimal tolls and social welfare benefits of the area-based schemes compared to those of the cordon-based schemes. Different sizes of the charging boundary have significant influences on the scheme benefits. The tests also show an interesting result on the non-effect of the boundary design (for both charging types) on their equity impacts. However, when comparing between charging regimes it is clear that the area schemes generate more inequitable results.  相似文献   

6.
The paper demonstrates a method to determine road network improvements that also involve the use of a road toll charge, taking the perspective of the government or authority. A general discrete network design problem with a road toll pricing scheme, to minimize the total travel time under a budget constraint, is proposed. This approach is taken in order to determine the appropriate level of road toll pricing whilst simultaneously addressing the need for capacity. The proposed approach is formulated as a bi-level programming problem. The optimal road capacity improvement and toll level scheme is investigated with respect to the available budget levels and toll revenues.  相似文献   

7.
Income inequity potentially exists under high occupancy toll (HOT) lanes whereby higher-income travelers may reap the benefits of the facility. An income-based multi-toll pricing approach is proposed for a single HOT lane facility in a network to maximize simultaneously the toll revenue and address the income equity concern, while ensuring a minimum level-of-service on the HOT lanes and that the toll prices do not exceed pre-specified thresholds. The problem is modeled as a bi-level optimization formulation. The upper level model maximizes revenue for the tolling authority subject to pre-specified upper bounds on tolls. The lower level model solves the stochastic user equilibrium problem. An agent-based solution approach is used to determine the toll prices by considering the tolling authority and commuters as agents. Results from numerical experiments indicate that a multi-toll pricing scheme is more equitable and can yield higher revenues compared to a single toll price scheme across travelers.  相似文献   

8.
Priced managed lanes are increasingly being used to better utilize the existing capacity of the roadway to relieve congestion and offer reliable travel time to road users. In this paper, we investigate the optimization problem for pricing managed lanes with multiple entrances and exits which seeks to maximize the revenue and minimize the total system travel time (TSTT) over a finite horizon. We propose a lane choice model where travelers make online decisions at each diverge point considering all routes on a managed lane network. We formulate the problem as a deterministic Markov decision process and solve it using the value function approximation (VFA) method for different initializations. We compare the performance of the toll policies predicted by the VFA method against the myopic revenue policy which maximizes the revenue only at the current timestep and two heuristic policies based on the measured densities on the managed and general purpose lanes (GPLs). We test the results on four different test networks. The primary findings from our research suggest the usefulness of the VFA method for determining dynamic tolls. The best-found objective value from the method at its termination is better than other heuristics for all test networks with average improvements in the objective ranging between 10% and 90% for revenue maximization and 0–27% for TSTT minimization. Certain VFA initializations obtain best-found toll profiles within first 5–50 iterations which warrants computational time savings. Our findings also indicate that the revenue-maximizing optimal policies follow the “jam-and-harvest” behavior where the GPLs are pushed towards congestion in the earlier time steps to generate higher revenue in the later time steps, a characteristic not observed for the policies minimizing TSTT.  相似文献   

9.
The network design problem is usually formulated as a bi-level program, assuming the user equilibrium is attained in the lower level program. Given boundedly rational route choice behavior, the lower-level program is replaced with the boundedly rational user equilibria (BRUE). The network design problem with boundedly rational route choice behavior is understudied due to non-uniqueness of the BRUE. In this study, thus, we mainly focus on boundedly rational toll pricing (BR-TP) with affine link cost functions. The topological properties of the lower level BRUE set are first explored. As the BRUE solution is generally non-unique, urban planners cannot predict exactly which equilibrium flow pattern the transportation network will operate after a planning strategy is implemented. Due to the risk caused by uncertainty of people’s reaction, two extreme scenarios are considered: the traffic flow patterns with either the minimum system travel cost or the maximum, which is the “risk-prone” (BR-TP-RP) or the “risk-averse” (BR-TP-RA) scenario respectively. The upper level BR-TP is to find an optimal toll minimizing the total system travel cost, while the lower level is to find the best or the worst scenario. Accordingly BR-TP can be formulated as either a min –min or a min –max program. Solution existence is discussed based on the topological properties of the BRUE and algorithms are proposed. Two examples are accompanied to illustrate the proposed methodology.  相似文献   

10.
It is widely recognized that precise estimation of road tolls for various pricing schemes requires a few pieces of information such as origin–destination demand functions, link travel time functions and users’ valuations of travel time savings, which are, however, not all readily available in practice. To circumvent this difficulty, we develop a convergent trial-and-error implementation method for a particular pricing scheme for effective congestion control when both the link travel time functions and demand functions are unknown. The congestion control problem of interest is also known as the traffic restraint and road pricing problem, which aims at finding a set of effective link toll patterns to reduce link flows to below a desirable target level. For the generalized traffic equilibrium problem formulated as variational inequalities, we propose an iterative two-stage approach with a self-adaptive step size to update the link toll pattern based on the observed link flows and given flow restraint levels. Link travel time and demand functions and users’ value of time are not needed. The convergence of the iterative toll adjustment algorithm is established theoretically and demonstrated on a set of numerical examples.  相似文献   

11.
This paper investigates the role of transport pricing in network design and describes two facts about flow pattern in a transportation system. The first, illustrated by an example of Braess paradox, is that adding a new link to the network does not necessarily minimize the total travel time. The second is that introducing of appropriate toll pricing may reduce not only the total network time but also the travel time for each individual traveller. It follows with the investigations of different system objectives and different pricing policies (only toll pricing and distance‐based pricing are considered), and shows how they affect the system performance and flow pattern. Lastly, a systematic optimization process is proposed for integrated planning of transport network and pricing policies.  相似文献   

12.
This paper addresses the optimal toll design problem for the cordon-based congestion pricing scheme, where both a time-toll and a nonlinear distance-toll (i.e., joint distance and time toll) are levied for each network user’s trip in a pricing cordon. The users’ route choice behaviour is assumed to follow the Logit-based stochastic user equilibrium (SUE). We first propose a link-based convex programming model for the Logit-based SUE problem with a joint distance and time toll pattern. A mathematical program with equilibrium constraints (MPEC) is developed to formulate the optimal joint distance and time toll design problem. The developed MPEC model is equivalently transformed into a semi-infinite programming (SIP) model. A global optimization method named Incremental Constraint Method (ICM) is designed for solving the SIP model. Finally, two numerical examples are used to assess the proposed methodology.  相似文献   

13.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

14.
This paper investigates the impact of cordon-based congestion pricing scheme on the mode-split of a bimodal transportation network with auto and rail travel modes. For any given toll-charge pattern, its impact on the mode-split can be estimated by solving a combined mode-split and traffic-assignment problem. Using a binary logit model for the mode-split, the combined problem is converted into a traffic-assignment problem with elastic demand. Probit-based stochastic user equilibrium (SUE) principle is adopted for this traffic-assignment problem, and a continuously distributed value of time (VOT) is assumed to convert the toll charges and transit fares into time-units. This combined mode-split and traffic-assignment problem is then formulated as a fixed-point model, which can be solved by a convergent Cost Averaging method. The combined mode-split and traffic-assignment problem is then used to analyze a multimodal toll design problem for cordon-based congestion pricing scheme, with the aim of increasing the mode-share of public transport system to a targeted level. Taking the fixed-point model as a constraint, the multimodal toll design problem is thus formulated as a mathematical programming with equilibrium constraints (MPEC) model. A genetic algorithm (GA) is employed to solve this MPEC model, which is then numerical validated by a network example.  相似文献   

15.
A number of studies have shown that in addition to travel time and cost as the common influences on mode, route and departure time choices, travel time variability plays an increasingly important role, especially in the presence of traffic congestion on roads and crowding on public transport. The dominant focus of modelling and implementation of optimal pricing that incorporates trip time variability has been in the context of road pricing for cars. The main objective of this paper is to introduce a non-trivial extension to the existing literature on optimal pricing in a multimodal setting, building in the role of travel time variability as a source of disutility for car and bus users. We estimate the effect of variability in travel time and bus headway on optimal prices (i.e., tolls for cars and fares for buses) and optimal bus capacity (i.e., frequencies and size) accounting for crowding on buses, under a social welfare maximisation framework. Travel time variability is included by adopting the well-known mean–variance model, using an empirical relationship between the mean and standard deviation of travel times. We illustrate our model with an application to a highly congested corridor with cars, buses and walking as travel alternatives in Sydney, Australia. There are three main findings that have immediate policy implications: (i) including travel time variability results in higher optimal car tolls and substantial increases in toll revenue, while optimal bus fares remain almost unchanged; (ii) when bus headways are variable, the inclusion of travel time variability as a source of disutility for users yields higher optimal bus frequencies; and (iii) including both travel time variability and crowding discomfort leads to higher optimal bus sizes.  相似文献   

16.
Autonomous and connected vehicles are expected to enable new tolling mechanisms, such as auction-based tolls, for allocating the limited roadway capacity. This research examines the public perception of futuristic auction-based tolling systems, with a focus on the public acceptance of such systems over current tolling practices on highways (e.g., dynamic and fixed tolling methodologies). Through a stated-preference survey, responses from 159 road-users residing in Virginia are elicited to understand route choice behavior under a descending price auction implemented on a hypothetical two-route network. Analysis of the survey data shows that there is no outright rejection of the presented auction-based tolling among those who are familiar with the current tolling methods. While males strongly support the new method, no clear pattern emerges among other demographic variables such as income and education level, and age. While high income respondents and regular commuters are more likely to pay higher tolls, no statistical significance between different genders, age groups, household sizes, and education levels is found. Based on the modeling results and the hypothetical road network, it is found that descending price tolling method yields higher average toll rates, and generates at least 70% more revenue when travel time saving is 30 min, and improves capacity utilization of the toll road significantly compared to fixed tolls.  相似文献   

17.
Traffic signal timings in a road network can not only affect total user travel time and total amount of traffic emissions in the network but also create an inequity problem in terms of the change in travel costs of users traveling between different locations. This paper proposes a multi‐objective bi‐level programming model for design of sustainable and equitable traffic signal timings for a congested signal‐controlled road network. The upper level of the proposed model is a multi‐objective programming problem with an equity constraint that maximizes the reserve capacity of the network and minimizes the total amount of traffic emissions. The lower level is a deterministic network user equilibrium problem that considers the vehicle delays at signalized intersections of the network. To solve the proposed model, an approach for normalizing incommensurable objective functions is presented, and a heuristic solution algorithm that combines a penalty function approach and a simulated annealing method is developed. Two numerical examples are presented to show the effects of reserve capacity improvement and green time proportion on network flow distribution and transportation system performance and the importance of incorporating environmental and equity objectives in the traffic signal timing problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

19.
This paper addresses the toll pricing framework for the first‐best pricing with logit‐based stochastic user equilibrium (SUE) constraints. The first‐best pricing is usually known as marginal‐cost toll, which can be obtained by solving a traffic assignment problem based on the marginal cost functions. The marginal‐cost toll, however, has rarely been implemented in practice, because it requires every specific link on the network to be charged. Thus, it is necessary to search for a substitute of the marginal cost pricing scheme, which can reduce the toll locations but still minimize the total travel time. The toll pricing framework is the set of all the substitute toll patterns of the marginal cost pricing. Assuming the users' route choice behavior following the logit‐based SUE principle, this paper has first derived a mathematical expression for the toll pricing framework. Then, by proposing an origin‐based variational inequality model for the logit‐based SUE problem, another toll pricing framework is built, which avoids path enumeration/storage. Finally, the numerical test shows that many alternative pricing patterns can inherently reduce the charging locations and total toll collected, while achieving the same equilibrium link flow pattern. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This study develops a methodology to model transportation network design with signal settings in the presence of demand uncertainty. It is assumed that the total travel demand consists of commuters and infrequent travellers. The commuter travel demand is deterministic, whereas the demand of infrequent travellers is stochastic. Variations in demand contribute to travel time uncertainty and affect commuters’ route choice behaviour. In this paper, we first introduce an equilibrium flow model that takes account of uncertain demand. A two-stage stochastic program is then proposed to formulate the network signal design under demand uncertainty. The optimal control policy derived under the two-stage stochastic program is able to (1) optimize the steady-state network performance in the long run, and (2) respond to short-term demand variations. In the first stage, a base signal control plan with a buffer against variability is introduced to control the equilibrium flow pattern and the resulting steady-state performance. In the second stage, after realizations of the random demand, recourse decisions of adaptive signal settings are determined to address the occasional demand overflows, so as to avoid transient congestion. The overall objective is to minimize the expected total travel time. To solve the two-stage stochastic program, a concept of service reliability associated with the control buffer is introduced. A reliability-based gradient projection algorithm is then developed. Numerical examples are performed to illustrate the properties of the proposed control method as well as its capability of optimizing steady-state performance while adaptively responding to changing traffic flows. Comparison results show that the proposed method exhibits advantages over the traditional mean-value approach in improving network expected total travel times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号