首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
有限元法在湿式多片制动器温度场研究中的应用   总被引:2,自引:0,他引:2  
简要介绍了有限元法在湿式多片制动器摩擦偶件温度场研究中的应用。分析了目前研究湿式多片制动器摩擦偶件温度场普遍采用的二维有限元法,指出了其优缺点。提出了摩擦偶件三维有限元模型分析方法,论述了这种方法的优点及其应用的可行性。  相似文献   

2.
文中在充分考虑全封闭湿式制动器多构层、有间隙结构特点的基础上,建立了全封闭湿式多盘制动器摩擦元件的有限元分析模型。分别从制动强度和制动时间两方面定义极限工况,进而来研究湿式制动器热源、温度场、应力场的特性及变化规律。建立了温度、应力与制动时间、摩擦盘半径的关系曲线,掌握湿式制动器温度场—热变形—热应力三者之间的影响规律并建立相关模型,对改进湿式制动器结构,为制动器冷却系统的设计及冷却时间的循环周期选取提供依据,对提高使用寿命有非常重要的指导意义。  相似文献   

3.
盘式制动器数值模拟及失效机理分析   总被引:1,自引:0,他引:1  
利用非线性有限元多物理场方法,模拟了汽车盘式制动器的制动过程;通过对制动器在紧急制动工况下三维瞬态温度场、应力场的分析计算,揭示了制动器摩擦副的温度和应力分布规律,探讨了盘式制动器的失效机理,并提出了改进措施。  相似文献   

4.
汽车盘式制动器的研究进展   总被引:1,自引:0,他引:1  
结合汽车盘式制动器设计与应用中存在的问题,对汽车盘式制动器摩擦衬片压力分布规律、摩擦偶件温度场和应力场的分布、摩擦衬片与对偶钢盘的摩擦机理、摩擦副间传热机理与制动噪声的研究状况进行了综述,探讨了今后的研究方向.  相似文献   

5.
2 制动器 制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动,可分为湿式多片制动器和带式制动器两种。 (1)湿式多片制动器 湿式多片制动器的结构与离合器相似,图18是4T65E自动变速器4档制动器结构图。制动器壳与变速器壳体相连,固定不动,在其内装有活塞及钢片、磨擦片。在制动器壳体内表面有轴向内花键,与钢片的外花键嵌合,在4  相似文献   

6.
湿式多盘制动器制动噪声机理研究   总被引:1,自引:0,他引:1  
为了减弱和消除湿式多盘制动器的制动噪声,针对湿式多盘制动器的工作特性,建立了湿式多盘制动器制动时的数学模型,并应用模态分析方法推导出影响制动噪声产生的理论公式,研究了湿式多盘制动器制动噪声的产生机理,分析了湿式多盘制动器产生制动噪声的主要因素,提出了防治湿式多盘制动器制动噪声的具体措施。  相似文献   

7.
<正>摩托车离合器(见图1)在摩托车运行中起到平稳起步、传递动力、换挡平顺的作用,由此,离合器是集摩托车的安全性、使用性、舒适性于一体的零部件。离合器是起步或变速时切断和连接发动机到变速器动力传动的装置,相当于电气线路中的开关,分为干式单片型和湿式多片型2种,摩托车多采用湿式多片型离合器(见图2)。在摩托车湿式多片型离合器中,叠装在离合器大毂内的摩擦片和花键套上的摩擦铁片组成摩擦副,转矩通过摩擦副的  相似文献   

8.
应用理论分析盘式制动器摩擦副的温度场及压应力场分布情况,并通过转动惯量试验台进行试验,验证理论分析结果.运用所得到的结果,在实际的制动器设计中提出改进方案和措施.  相似文献   

9.
离合器是起步或变速时切断和连接发动机到变速器动力传动的装置,相当于电气线路中的开关,分为干式单片型和湿式多片型两种,摩托车多采用湿式多片型离合器。在摩托车湿式多片型离合器中,叠装在离合器大毂内的摩擦片和花键套上的摩擦铁片组成摩擦副,扭矩就是通过摩擦副的相互作用来传递的。现以GS125的离合器为例分析离合器的一次结合过程。GS125离合器由离合器大毂组合、离合器花键套、五片主动摩擦片、四片从动片、离合器弹簧盘等部分组成(结构见下图)。随着离合手把逐渐分开,弹簧压紧力逐渐释放,弹簧盘被逐渐压紧,摩擦力使得离合器花键套的转速上升,直到离合器大毂和花键套的转速一致时则完成了发动机扭矩的传递。离合器发冲的故障现象表现如下:摩托车起步刚挂  相似文献   

10.
针对高强度制动下轮边湿式制动器总成内部热积聚引起车辆可靠性、制动性和经济性的下降,建立该总成及其制动器有限元模型,分析温度场与应力场耦合下紧急制动与持续制动工况的湿式制动器热可靠性。基于键合图理论建立总成热源系统模型后,考虑空气和润滑油对流换热,分析热场与流场耦合下长时间高频制动工况整个总成的热可靠性。结果表明:高强度制动工况湿式制动器总成在应力场、温度场和流场的作用下其热可靠性显著下降,数值模拟与试验结果验证了分析方法正确性和结果有效性。  相似文献   

11.
正制动器俗称刹车,它是依靠制动摩擦副之间的相互摩擦作用实现速度调节,从而达到减速停车等目的的一种装置,一般也称为摩擦制动器或机械制动器。在汽车、摩托车等交通运输设施中,无一例外都要为其配备制动器来实现速度调节、制动停车的功能。制动过程中,制动装置是将机械系统的运动动能通过摩擦作用转化为热能和其它形式的能量消耗掉,因此制动过程的本质是一个能量转换的过程,它通过制动器摩擦副之间的机械摩擦作用,  相似文献   

12.
鼓式制动器摩擦副压强不均匀性分析与评价   总被引:8,自引:0,他引:8  
定义了鼓式制动器摩擦片压强的两种不均匀度指数,推导了现有的不同机构型式的鼓式制动器的摩擦副压强不均匀度指数的计算公式,并分析了其变化特性。以这两种压强不均匀度指数作为新的评价指标,对各种型式的鼓式制动器进行了评价,揭示了一些型式的鼓式制动器所固有的缺点。提出了改进传统鼓式制动器的技术方向和途径。  相似文献   

13.
为了获取DCT变速器湿式双离合器结合过程热影响规律,以某湿式双离合自动变速器为研究对象,借助于Matlab/Simulink仿真分析软件建立湿式双离合器接合过程动力学模型,对离合器接合时摩擦副滑摩热量及钢片温升进行了热影响因素仿真分析,得到离合器接合时间、发动机转速、结合压力和摩擦钢片厚度等因素对摩擦副温度变化的影响规律,为不同摩擦片结构及工作状况时冷却油流量合理配置提供了理论依据。  相似文献   

14.
为产生确定的输出运动,对汽车自动变速器行星齿轮机构中的部件而言,必须要有驱动和止动装置.通常,可将为行星齿轮机构部件提供驱动力和止动力的装置,一并称为执行机构.汽车自动变速器所采用的执行机构,一般由湿式多片离合器,湿式多片或带式制动器以及单向离合器等组成.  相似文献   

15.
高速多片湿式离合器低带排转矩参数优化设计   总被引:1,自引:0,他引:1  
试验发现高速湿式离合器在分离状态下易出现摩擦片与钢片之间的碰撞摩擦,由此引起离合器带排转矩的急剧增大,影响传动装置的工作效率和可靠性。因此,本文中以多片湿式离合器为研究对象,建立了湿式离合器油槽结构与工作参数优化设计模型,以离合器最高工作转速时的带排转矩最小为优化目标,采用基于带排转矩近似模型的优化设计方法,利用最优拉丁超立方试验设计法、椭圆基神经网络模型和多岛遗传算法分别对摩擦片油槽结构参数和离合器工作参数进行了优化设计,并对优化结果进行仿真和试验验证。研究结果表明:摩擦片油槽结构参数中油槽深度和油槽数量对带排转矩的负效应比较明显;离合器工作参数中摩擦副间隙对带排转矩的负效应较明显。  相似文献   

16.
湿式多片离合器的热弹性失稳分析   总被引:2,自引:0,他引:2  
基于湿式多片离合器实际结构和约束条件,应用ANSYS/LS-DYNA进行离合器摩擦副滑动摩擦阶段的瞬态热-结构耦合仿真,以分析对偶钢盘上的热点分布形式,比较不同厚度和不同环面宽度下,对偶钢盘表面的温度分布情况.最后用一个实例分析了对偶钢盘的尺寸对其热弹性失稳现象的影响.  相似文献   

17.
摩托车离合器离合频繁,产生摩擦热量大,磨损快。为保证离合器在一定允许温度范围内正常工作和保持一定使用寿命,现广泛采用多片湿式摩擦离合器。在进行离合器弹簧设计时应有试验要求;在摩擦片结构设计时应注意对摩擦材料,心板材料、摩擦偶数等进行合理选择。  相似文献   

18.
湿式摩擦离合器摩擦片热分析和油槽结构研究   总被引:1,自引:0,他引:1  
介绍了多片湿式摩擦离合器的结构及摩擦片常用油槽型式。通过理论分析推导出了摩擦片表面温度的计算方法,并以某42t重型汽车液力机械变速器中的多片湿式摩擦离合器为例,进行了主、从动盘摩擦片表面温度的理论计算和ANSYS分析,验证了摩擦片表面温度计算方法的正确性。通过试验研究确定了合适的摩擦片表面油槽结构为双圆弧槽。  相似文献   

19.
王军  李志远 《汽车维修》2006,(12):38-39
在汽车使用过程中,车轮制动器的主要部件制动鼓和制动蹄片会产生拉痕、沟槽、失圆等不同情形的磨损,从而使这对摩擦副的配合间隙失准,导致汽车的制动效能下降。因此,当间隙和磨损量达到一定程度时,必须对制动鼓和制动蹄片进行镗削。下面介绍T8360B型制动鼓镗床的结构及使用维护方法。  相似文献   

20.
建立了基于恒速制动车辆纵向力平衡方程、制动器耗散功率及其温度变化微分方程、管路压力调节等子模型的恒速长下坡汽车制动器摩擦性能分析系统.以两轴中型汽车为例,对前后制动器在不同挡位发动机制动时的温度、制动副摩擦因数、制动力分配及管路压力变化进行了计算.结果表明,在不影响车速情况下,合理使用各挡发动机制动可改善汽车前、后制动器热负荷,减小或避免制动摩擦力矩热衰退,保证汽车下长坡安全行驶.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号