首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
轨道交通路基段减隔振屏障的模型试验研究   总被引:4,自引:4,他引:0  
为了研究不同因素对屏障减隔振效果的影响,通过模型试验得到300 Hz内10 Hz整数倍的不同频率简谐荷载引起的振动波在地表的传播衰减规律,并对比分析无屏障及钢筋混凝土板、泡沫塑料板、非连续空井排、连续空井排、不同排距排桩、不同排数排桩等不同减隔振屏障措施的减隔振效果。试验结果表明:钢筋混凝土板屏障的减隔振效果最好;非连续空井排屏障与排桩屏障的减隔振效果无明显差异;当桩距固定为1.5倍桩径,调整排距至2.5倍桩径时,排桩屏障的减隔振效果最佳;排数越多,排桩屏障的减隔振效果越好;在各类减隔振屏障后均存在一定范围的振动隔离区,在振动隔离区范围外,屏障的减隔振效果消失。  相似文献   

2.
为了研究铁路路基混凝土排桩的隔振效果,通过模型试验方式,在模型试验箱中设置混凝土排桩作为土中障碍物,考虑桩截面尺寸、桩深度及桩间距因素,以加速度衰减率及振幅降低比来评价混凝土排桩隔振效果和影响其效果的因素。结果表明:混凝土排桩隔振效果显著,设置混凝土排桩可使桩后土体加速度衰减率达到47.8%~70.4%;单桩截面尺寸对隔振效果影响不明显,不同尺寸条件下加速度衰减率在1.5%~9.8%;桩深度增加对距振源一定距离处隔振效果影响比较显著,桩深度变化引起的加速度衰减率在18.3%~56.3%;随着桩间距增大,单排桩隔振效果降低。  相似文献   

3.
为了研究铁路路基不同材料填充屏障的隔振效果,通过不同激振频率下的模型试验,分析了无屏障、空沟屏障、沙子填充屏障、碎石填充屏障、橡胶颗粒填充屏障5种填充屏障对土体振动的影响规律。结果表明:空沟屏障隔振效果最佳,沙子填充屏障隔振效果相对较差;在距填充屏障较近位置处,不同填充屏障隔振效果相差较大,随着距离的增加,各填充屏障隔振效果逐渐接近;碎石填充屏障对振动波的反射最为剧烈,为无屏障时的1.62倍;橡胶颗粒填充屏障对振动波能量的吸收效果较好,对振动波的反射较小,为无屏障时的0.74倍。  相似文献   

4.
为了研究地铁紧邻既有建筑物时单排桩对于地铁产生的振动波能的减隔振效果及其影响因素,通过进行1g条件下的单排桩减隔振室内模型试验,分析在地铁振动激励作用下的建筑物振动形态,并在同时考虑振源深度、排桩位置、桩间距及桩长4个因素的情况下设计了相关正交实验,提出相关优化方案。分析结果表明:建筑物在地铁振动激励作用下,各楼层振动加速度级的大小呈现出波浪形的振动形态;随激振频率的增加,建筑物各测点振动加速度级总体表现出减小的趋势;单排桩在紧邻既有建筑的地铁隔振方面具有明显的减隔振效果,预期减振幅度可达13.59%;就影响减隔振效果的各因素而言,非排桩几何因素(地铁埋深\排桩位置)对减隔振效果影响较大,而排桩自身几何因素(桩间距\桩长)对于减隔振效果的影响则不如前者。  相似文献   

5.
针对轨道交通环境传播路径隔振,进行隔振周期排桩选型研究。在分析现有周期排桩隔振效果评价的基础上,提出以周期排桩带隙性能评价函数为单一指标,并考虑带隙分布的选型方法。该带隙性能评价函数综合考虑了带隙带宽、中心频率2个因素,基于该函数建立的选型方法规避了多指标分析的不确定性。考虑被阻隔对象的振动特征,将轨道交通环境振动的显著频率作为需要阻隔的关心频率引入该函数。该方法不再单独以首阶带隙为选型依据,而是综合考虑各阶带隙的分布情况。运用ABAQUS软件建立隧道—地层—周期排桩耦合三维动力有限元分析模型,进行选出隔振周期排桩的隔振效果分析。结果表明:所选隔振周期排桩在带隙分布范围内具有较好的振动隔离效果,验证了该选型方法的有效性。  相似文献   

6.
为了研究高速铁路应用混凝土排桩的减隔振效果,通过无限元边界与有限元边界相结合的有限元分析方法建立模型,并通过正交试验方法对高速铁路混凝土单排桩减隔振措施进行研究。研究结果表明:无限元边界与有限元边界相结合的有限元计算方法可以有效反映减隔振措施的实际效果;混凝土单排桩减隔振效果显著,设置混凝土单排桩可使其后土体振动加速度衰减少39.7%~75.8%;桩深度越深减隔振效果越好,深度增加加速度衰减率增加6.5%~24.2%;随着单桩截面尺寸增加减隔振效果增加,加速度衰减率增加6.5%~11.5%;桩间距对减隔振效果影响非常小,不同桩间距下加速度衰减率变化范围仅在0.2%~2.2%;通过正交试验选出最优方案为桩截面尺寸25 cm×25 cm,桩深15 m,桩间距0.5 m。  相似文献   

7.
为研究铁路带来的振动问题,针对层状土中双排环形排列桩对隔振效果的影响开展试验研究.研究结果表明:频率的增加,振源距的增大,环形排列桩对应圆心角度的增大,均会使隔振效果更为显著;在一定程度上,排间距越大则隔振效果越差;桩间角度也是影响隔振效果的重要因素,建议工程中桩间角度不要过大;桩长小于首层厚度时,隔振效果随桩长增加而增长,但增长效果相比大于首层厚度时较差,当桩埋深达到首层土厚附近时,会出现振动放大现象,因此,埋深允许情况下建议桩长超过分层界面;低频震动作用下,其隔振效果增幅范围较中频和高频大,中频震动下隔振效果增长起始点比低频和高频晚.  相似文献   

8.
针对高速铁路在运行过程中对周围环境产生的严重振动问题,通过进行1 g条件下单排封闭式PVC空井减隔振措施的室内缩尺模型试验,明确不同振动频率条件下其减隔振效果以及影响其减隔振效果的因素,为实际工程提供参考。研究结果表明:单排封闭式PVC空井减隔振效果良好,设置后井后各处相对加速度最大衰减达20%左右。低频率振动下,增加空井直径可使靠近空井处的减隔振效果更加明显,而高频率振动下,对井后各处均有明显影响。增加空井的深度可提高其减隔振效果,且深度越深,减隔振效果增加的越明显,但相比于加大空井的直径,该措施的影响能力有限。减小井间距(净距)可提高其减隔振效果,但随着空井的加密,减隔振效果的增加逐渐变缓。  相似文献   

9.
为了研究影响轨道交通微型混凝土隔振桩在地表浅层中隔振效果的敏感因素,采用二次正交回归设计原理建立多因素交互作用下的微型单排桩隔振效果简化预报模型。并对各敏感因素进行逐步回归分析,明确影响单排隔振桩隔振效果各敏感因素的权重。结果表明:影响单排隔振桩隔振效果的敏感因素的权重为隔振桩长(0. 485)、振源距(0. 141)、隔振桩桩长与桩截面宽度的交互作用(0. 113)、桩间距(0. 086)、桩间距与桩截面宽度的交互作用(0. 085)、振源距与桩截面宽度的交互作用(0. 026);影响单排隔振桩隔振效果的敏感因素主要体现在隔振桩桩长与桩间距,对隔振桩隔振效果的贡献为62. 6%;敏感因素中的交互作用主要体现在隔振桩桩长与桩截面宽度之间,对隔振桩隔振效果的贡献为11. 3%。在实际工程中采用微型单排隔振桩进行隔振时,尽量采用桩长度较大的混凝土隔振桩;在考虑多敏感因素交互作用的影响时,主要综合考虑隔振桩桩长与桩截面宽度,以获得较好的隔振效果。  相似文献   

10.
通过仿真计算分析了两种轻型浮置板轨道系统的隔振性能、不同荷载作用位置对力传递率的影响及传递给基础的力。结果表明,在高于固有频率约1. 4倍时,两种浮置板轨道系统才有隔振效果,且两者隔振效果相差不大;力传递率在低于浮置板系统固有频率的低频段,载荷位置处在中间时较小,在边缘时稍大。普通轨道系统力传递率随离开荷载作用位置在振动频率100 Hz以上衰减很快,而两种浮置板随距离在振动频率10 Hz以上衰减较快。两种浮置板轨道系统在相同位移激励的轮轨力作用下传递给基础的力相差不大,并且在中高频具有良好的隔振性能。  相似文献   

11.
基于Bloch-Floquet理论的平面波展开法求解周期波屏障的衰减域,提出具有低频、宽带特点的六角晶格二维三组元局域共振型周期排桩结构,建立针对轨道交通环境振动隔振研究的隧道-地层-周期性波屏障耦合的数值模型,利用车-轨耦合解析模型计算获得浮置板隔振器的动反力输入上述模型,验证优势结构衰减域的正确性,综合评价了周期排桩的隔振效果。研究表明:排桩在相同布置形式下,适当降低土体弹性模量可有效降低该周期结构第一衰减域起始值,但同时缩小其衰减域宽度;覆土和粉质黏土与桩构成的周期结构在20~80Hz频段内较卵石砂砾-桩周期结构具有更好的衰减域特性;整体看,数值模型分析获得的衰减域与计算的带隙重叠区吻合良好,水平方向完全吻合,竖直方向受桩长制约,特定频段波在桩底绕射效应明显;首层土(覆土)的衰减域起主要控制作用。  相似文献   

12.
在分析瑞利波在空沟转角处的反射、透射以及沿空沟传播的基础上,得到瑞利波衰减与空沟参数的关系,进而推导出空沟外侧任意点土体振动响应的计算公式。采用该公式和仿真分析研究空沟对列车引起环境振动的影响。结果表明:随着空沟深度的增加,空沟的隔振效果也越明显;空沟对高频(11~40 Hz)振动的隔振效果较低频(1~10Hz)振动明显;空沟隔振效果与瑞利波波长有关,空沟沟深大于瑞利波长时,隔振效果较好;空沟宽度及空沟距振源的距离对列车产生的环境振动隔振效果均不明显;推导公式计算结果与数值分析结果基本一致,验证了推导公式的正确性。  相似文献   

13.
浮置板式轨道结构隔振效果仿真研究   总被引:13,自引:2,他引:11  
建立列车—轨道结构耦合系统有限元模型,将轨道不平顺作为列车—轨道结构耦合系统的激励源,对普通碎石道床轨道结构和浮置板式轨道结构的列车—轨道结构耦合系统动力学性能进行仿真研究,对比分析这2种类型的轨道结构系统振动响应与系统振动传递函数,评价浮置板式轨道结构的隔振效果。分析结果表明,浮置板式轨道结构与普通碎石道床轨道结构相比,振动加速度降低约70%,距线路5 m处大地振动加速度响应峰值降低约62.8%,相应Z振级衰减约10 dB,竖向振动加速度频率范围由0~200 Hz降到0~60 Hz,有效起到了振动隔离效果。  相似文献   

14.
针对冷藏运输车的振动问题,基于二自由度振动分析理论建立了制冷机组的振动力学模型,并通过现状仿真和优化隔振效果仿真得到了冷板车制冷机组最优减振隔振方案.通过现状仿真得到了满载和空载工况下隔振器变形随时间变化的曲线以及机组与车体加速度的对比曲线,并给出了制冷机组取得较好隔振效果隔振器必须满足的频率和刚度范围.结果表明:制冷机组现有的隔振效果很差;通过优化隔振效果仿真得到了不同隔振器固有频率时车体和机组最大加速度的响应曲线以及隔振器最大变形曲线.  相似文献   

15.
采用有限元法计算二维声子晶体的带隙特性,并研究基体为粉质黏土、散射体为混凝土时正方格子二维声子晶体的XY模式的带隙变化规律。通过现场测试得到城市轨道交通运营引起近场土体的振动特性,并设计出相应隔振频段的排桩布置参数,计算分析排桩排数与隔振效果的变化规律。结果表明,隔振排桩对城市轨道交通运营引起的近场土体振动特征频带具有良好的减振效果。  相似文献   

16.
研究目的:为了准确而又高效地评价道砟垫的隔振性能,本文建立单自由度阻抗模型和多自由度车辆-轨道耦合动力学模型,并分析对比刚性基础上的有砟轨道铺设道砟垫后的加速度插入损失,并与实测数据进行验证分析。研究结论:(1)在0~200 Hz频段内,单自由度阻抗模型和多自由度车辆-轨道耦合模型都能有效的评价道砟垫的隔振性能,但前者计算简便、力学概念清晰,具有更强的工程实用性;(2)道砟垫隔振作用具有频率选择性,即它只能在某一频段内才具有明显的隔振作用,而其他频段隔振作用甚微甚至会放大振动;道砟垫隔振作用最显著频率为铺设道砟垫前系统的固有频率,此处加速度插入损失达到16.3 dB之多;(3)隔振效果最差,即放大振动最明显频率为铺设道砟垫后系统的第一阶共振频率,这个频率在设计道砟垫时应予以重视,避免与要求被隔振结构的固有频率重合;(4)本文提出的单自由度阻抗模型,对铁路有砟道床的隔振设计有一定的参考意义。  相似文献   

17.
为了研究砂土填充沟对高速列车产生的振动波能的隔振效果,通过室内砂土填充沟隔振模型试验,分析了砂土粒径、含水率及密度对砂土填充沟隔振效果的影响。结果表明:在本文试验条件下,在近场主动隔振中砂土填充沟具有明显的隔振效果,降振幅度最大达80.20%;对于中低频振动,填充沟边缘处的隔振效果极为显著,距沟边缘越远隔振效果越弱;填充砂粒径的变化对隔振效果的影响并不显著;填料不宜选用级配优良的砂土;对于中低频振动砂土含水率越大隔振效果越明显,而高频振动不受砂土含水率的影响;填充砂密度与周围土体密度差的越大,砂土填充沟隔振效果越显著。  相似文献   

18.
为了研究高速铁路空沟减隔振措施的减隔振效果及其影响因素,以空沟后侧土体为分析对象,采用数值分析方法找出不同工况条件下空沟后侧土体的振动规律,并引入空沟后侧土体的平均加速度值来评价空沟减隔振效果及其影响因素。研究结果表明:设置空沟减隔振措施可使空沟后侧土体平均加速度值衰减30%~80%;空沟深度对减隔振效果影响显著,但增加至一定深度后,其减隔振效果增强幅度减小;空沟宽度对减隔振效果影响不明显,宽度的增加不能很好的降低空沟后侧土体的平均加速度值,还可能导致平均加速度值的增大;在列车荷载幅值相同的条件下,空沟的减隔振效果随频率的升高而增强,当频率升高至一定程度后,减隔振效果变的平稳。  相似文献   

19.
针对地铁道床板隔振系统的振动特性和动力响应进行了分析研究,并通过对道床板隔振系统的动态参数进行优化设计,提出了较为完善的技术参数。优化分析结果表明:在选取的参数范围内,其隔振系统的第一阶固有频率都在10 Hz以上,可避开车轮和车轴经过轨道扣件的频率段。如道床垫刚度取0.018 N/mm3,道床板厚度取200 mm,扣件竖向刚度取4.0 k N/mm,则隔振系统的前三阶模态频率分别为14.38Hz、14.57 Hz和16.62 Hz,均在14~17 Hz之间;而在30~35 Hz之间无振型,可有效避开转向架经过轨道扣件的频率。  相似文献   

20.
以成都—都江堰高速铁路工程为背景,通过现场测试试验,研究桥上无砟轨道铺设橡胶减振垫的减振效果.结果表明:铺设橡胶减振垫后,减振垫上钢轨和轨道板的振动略有放大,但影响甚微,而减振垫下底座板、桥梁及地面的振动显著降低,其中底座板的最大振动加速度降低了85%左右;时域内,在距线路中心线0,15和30 m处地面的最大竖向加速度振级均降低了9.5dB左右;频域内,在0~6.3 Hz频段内,橡胶减振垫的减振效果不明显;在8~20 Hz频段内,由于与轨道—桥梁—大地系统本身的自振频率重合,反而放大了地面的振动;在25~100 Hz频段内,减振作用明显,且距线路中心线越远,减振效果越显著,但距线路中心线不同距离处对应最大减振作用的频段和插入损失值不同,0m处最大减振作用出现在31.5 Hz频段,插入损失值为7.8 dB,15和30 m处最大减振作用均出现在40 Hz频段,插入损失值分别为13.6和16.4 dB.可见,橡胶减振垫能够对25 Hz以上频段的振动起减振作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号