首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
以某钢桁梁桥为工程背景,详细介绍了受损节点加固后力学性能分析的方法和结果.首先按照规范验算撕破强度,然后根据实桥荷载试验结果,建立并修正ANSYS三维实体有限元分析模型.对在各种机车类型,尤其是D型机车作用下的节点板受力状况进行了详细分析,根据各种工况下的分析结果,制定该桥当前通行条件.  相似文献   

2.
以跨径336 m的下承式系杆拱桥为背景,对大跨钢系杆拱桥的拱脚节点局部受力进行有限元计算分析。针对拱脚局部受力存在的问题,提出四种构造优化方案并分别进行计算验证。根据验证结果对拱脚节点构造方式、钢板厚度、开洞位置、支座布置等进行优化。对日后类似的结构设计,尤其是拱肋和系梁腹板倾斜、腹板间距较大的系杆拱桥拱脚节点设计,具有一定的参考意义。  相似文献   

3.
广州从化大桥工程主桥为单跨136m的下承式钢管混凝土空间拱梁组合体系桥,属于非常规结构,吊杆与拱肋、吊杆与主梁的节点锚固设计是整个设计方案的关键控制点之一.为了得到合理的吊杆锚固设计方案,保证结构受力安全,给出了针对从化大桥的各种可能的节点连接方案,并对其优缺点逐一进行了分析评价,最后给出了该桥采用的方案.  相似文献   

4.
螺栓脱落是钢桁梁桥的常见病害类型,为分析螺栓脱落病害对节点转动刚度的影响,以某下承式简支钢桁梁桥为工程背景,使用 ANSYS 软件建立钢桁梁桥节点部位的实体有限元模型,计算不同螺栓脱落病害工况下节点部位的转动刚度。计算结果表明,当螺栓从第1排开始依次向内脱落时,节点的转动刚度会明显下降,且节点转动刚度的下降趋势随着螺栓脱落数量的增加而变缓。  相似文献   

5.
以某悬索桥为背景工程,建立了该桥对应的ANSYS全桥有限元模型,并以标准疲劳车分别对各车道进行了加载,找出了应力幅最大的主梁桁架杆件节点作为关键节点。根据该悬索桥的现场实测数据,分析了主梁关键节点的应力历程曲线,利用雨流计数法处理得到了该桥的疲劳应力谱。结合线性疲劳累积损伤理论,对该悬索桥关键节点疲劳寿命做出了简单预测,并根据交通量增长率变化情况,预测了该悬索桥的远期交通量发展情况以及加劲梁的远期疲劳寿命。研究表明,公路桥梁交通量的变化情况对主梁疲劳寿命的影响不可忽略;山区公路桥梁与城市公路桥梁的交通量变化趋势差别较大,且山区桥梁通行车辆中重车占比较高。  相似文献   

6.
刘维华  安蕊梅 《中外公路》2011,31(3):114-118
2007年8月1日,美国明尼苏达州明尼阿波利斯市跨越密西西比河的I-35W桥突然破坏.根据该桥的原始设计图、美国国家运输安全局提供的调查资料及桥梁上部结构的设计荷载,ACII高级结构工程师S.Hao对桥梁进行了分析,笔者主要介绍他的分析方法和结果.调查和分析的结果是:1)节点板设计厚度和上弦杆边壁厚度与利用平面分析得出...  相似文献   

7.
高能祥 《城市道桥与防洪》2020,(5):260-265,M0026
使用Ansys建立了某大跨度斜拉桥有限元模型,并对该斜拉桥进行动力特征分析,得到了该桥固有频率和振型;利用谐波合成法编制Matlab程序,合成了该斜拉桥的三维空间脉动风场,得到了该桥主梁和桥塔各离散点的脉动风速时程;利用各离散点的风速时程转化为有限元模型中各节点抖振力时程,并对该桥进行了抖振时域分析,得到了该桥在风荷载作用下的动力响应结果。  相似文献   

8.
为研究钢管混凝土系杆拱桥关键节点的受力行为,以某钢管混凝土系杆拱桥为工程背景,采用有限元方法对其全过程非线性受力行为进行深入分析。首先,建立钢管混凝土拱桥整体模型,对其整体受力行为进行分析,提取系杆拱桥关键节点在设计荷载工况下的最不利内力情况;然后以力边界条件形式施加给节点三维精细有限元模型,对拱脚节点和拱肋吊装节点在设计荷载工况下进行应力分析,探讨2种节点在设计荷载工况下的受力行为;最后,考虑材料非线性行为,采用弧长法对2类节点极限承载力进行分析,探讨其承载非线性行为及安全储备。研究结果表明:这2种节点构造形式在设计荷载工况下均安全可靠,且具有较大的安全储备;拱脚节点区拱肋钢管与系梁上翼缘板相交处存在明显的应力集中现象,该处构造复杂,焊缝多,设计时应重点关注;吊装节点区下弦钢管径向刚度小,采用环向加劲肋加强后,对钢管刚度及承载力均有显著改善。  相似文献   

9.
对运营20余年的江界河大桥外观病害进行全面检测,获得该桥的技术状况等级。使用桥梁博士软件对该桥结构进行有限元分析,确定其静动载试验的各种最不利工况及加载载位,并根据其现场静动载试验,得出其各加载工况下的相应挠度、应变等参数。基于病害检测结果对桥梁承载能力进行评定,并对该桥的病害成因进行分析。  相似文献   

10.
为分析构件性能退化对钢板组合梁桥可靠性的影响,提出一种基于动态贝叶斯网络(Dynamic Bayesian Network, DBN)的时变可靠性分析方法。该方法首先依据材料劣化公式建立钢板组合梁桥抗力退化模型;然后基于DBN构建组合梁桥构件性能退化初始模型,利用钢板组合梁桥抗力退化模型随机生成不同变量组合作用下的抗力数据,对该初始模型进行训练,通过参数学习得到DBN先验模型及节点条件依赖关系,并加入观测节点及可靠度节点,建立适用于可靠性分析的DBN模型;最后输入桥梁检测数据,实现桥梁可靠度指标更新。采用该方法和蒙特卡洛法对某钢板组合梁桥时变可靠性进行分析,结果表明:2种方法预测结果基本一致,该方法可准确预测钢板组合梁时变可靠度;以可靠度为寿命评价指标,输入该桥运营60年时的检测信息,更新前、后该桥的使用寿命分别为75年、64年,应提前对桥梁采取维修与养护措施。  相似文献   

11.
介绍重庆菜园坝长江大桥正交异性桥面板整体节点钢桁梁设计、施工的新理念,以及钢桁梁工厂组拼、整体节段运输、吊装、现场对接拼装等工艺措施及要点,并对钢桁梁整体施工关键技术进行了研究。  相似文献   

12.
黄冈公铁两用长江大桥桥塔墩顶4个节间钢梁架设方案   总被引:5,自引:5,他引:0  
邓永锋 《桥梁建设》2012,42(2):7-12
黄冈公铁两用长江大桥主桥钢梁总体架设采用散拼架设方案.为解决浮吊资源问题,结合钢梁总体架设方案,通过架梁吊机和临时支架的安装及架梁吊机在此站位情况下实现墩顶节间钢梁架设的可行性研究,确定该桥塔墩顶4个节间钢梁架设方案为:先利用浮吊趁高水位时在墩旁托架上安装1个临时支架,然后在此临时支架上安装1台WD70C型架梁吊机,利用该架梁吊机完成墩顶4节间钢梁的架设工作.目前,利用该方案已完成第1个节间的钢梁架设,验证了该方案的可行性.  相似文献   

13.
中宁黄河特大桥钢桁梁采用整体节点,由于在整体节点处有不同平面的杆件交汇,所以制孔的精度十分重要.为确保各种杆件能准确连接,制作了专用制孔胎具和确定了制孔的工艺措施, 使得中宁黄河大桥钢桁梁的制造精度满足了设计要求并顺利地完成了安装施工.  相似文献   

14.
介绍铜九线鄱阳湖特大桥钢桁梁设计简况,重点包括节点外拼接的、有竖杆的华伦式桁架总体尺寸的确定及结构细节的处理。  相似文献   

15.
丁仕洪 《桥梁建设》2020,50(1):116-120
新建安九铁路庐山特大桥采用1孔96 m钢-混组合桁架梁结构跨越瑞九铁路线。根据桥梁结构特点及施工条件,该桥采用“异位成型、转体就位”的方案施工。在瑞九铁路线侧搭设组合支撑体系,在组合支撑体系上进行钢桁梁的拼装及混凝土槽形梁现浇施工;在Y197号墩墩顶设置固定端转轴、Y198号墩侧设置转体滑道和牵引设备,以Y197号墩中心为圆心、96 m为半径,将梁体转动16°至设计位置;转体后,按照单墩同步、两墩交替循环的方式落梁2429 mm至设计标高,完成钢-混组合桁架梁桥施工。  相似文献   

16.
128m双线铁路简支钢桁梁桥设计   总被引:2,自引:0,他引:2  
任万敏  朱敏  袁明 《桥梁建设》2012,42(1):79-83
赵寨颖河双线特大桥主桥为128 m下承式简支钢桁梁桥.主桁采用带竖杆的三角形腹杆体系;主桁弦杆均采用箱形截面,内力较大的腹杆采用箱形截面,内力较小的腹杆采用H形截面;在上弦杆平面内设置交叉式上平纵联;采用密横梁整体正交异性板有砟桥面系.该桥采用在岸边临时支架上拼装钢桁梁及导梁,在河中设置2个临时支墩的半悬臂拖拉法施工.采用MIDASCivil 2006建立主梁三维有限元模型,计算主梁杆件内力及位移、预拱度、自振特性,计算结果表明该桥设计合理,满足规范要求.  相似文献   

17.
东新赣江特大桥钢桁梁架设施工技术   总被引:3,自引:3,他引:0  
东新赣江特大桥主桥为变截面双主桁连续钢桁梁桥,跨径布置为(126+196+126)m,主桁采用N形上弦变高桁式。为确保主桥钢桁梁准确定位,针对钢桁梁结构特点,在陆地上设置钢梁预拼场组拼杆件,在水上采用浮吊架设,采取膺架与悬臂法拼装相结合的方案,由两端边跨向主跨拼装,采用边墩顶落梁,并结合顶拉钢桁梁纵移的方法进行合龙。通过调整上下弦横向偏移、高差、纵向偏移等技术使钢桁梁中线偏位、主桁高差、钢梁竖向线形等均得到较好控制,实现钢桁梁高精度合龙。  相似文献   

18.
道庆洲大桥引桥第7联为跨度73m的双层公轨两用简支变宽钢桁梁,主桁采用三角桁架,桁高9.4m,标准节间长12m。上层公路桥面采用钢筋混凝土板与密横梁结合体系,下层铁路桥面系采用正交异性钢桥面板结构。桥梁位于平面缓和曲线上,采用主桁变宽解决桥面变宽问题。公路桥面系宽度从34.058m变化到45.476m;通过抬高曲线外侧上弦杆件高度及挑臂横梁高度,并利用混凝土板局部加厚来实现从0%到2%的曲线超高。铁路桥面系高1.524m,宽度从13.7m变化到25.65m,超高通过调整道床板高度来实现。  相似文献   

19.
姚发海 《桥梁建设》2007,(6):6-8,19
武汉天兴洲公铁两用长江大桥主桥为双塔三索面斜拉桥,主梁为板桁结合钢桁梁,3片主桁,采用整体节段架设施工。对钢桁梁整体节段架设的可行性进行分析。  相似文献   

20.
某大跨度铁路桥位于强震山区,采用主跨1060 m的上承式钢桁梁悬索桥,主桁采用华伦式桁架,桁宽30 m、桁高12 m,节间长10 m。结合强震山区铁路悬索桥的受力特点,加劲梁约束体系采用塔梁分离、塔墩固结的半飘浮体系,桥塔处纵向阻尼器与下平联设置在同一平面,桥塔和桥台处均设置相互协调工作的横向支座与横向阻尼器,并设置地震反压结构,在桥台端横梁中央设置局部受压支座,解决了大跨度铁路悬索桥抗强震、大风作用及轨道局部平顺性问题。钢桁梁主要构件采用Q370qD钢,局部构件采用Q500qD钢,主桁杆件和联结系杆件分别采用M30和M24高强度螺栓连接。加劲梁主桁上弦杆采用箱形截面杆件、焊接整体节点,下弦杆主要采用H形截面杆件、拆装式节点;上层通过交叉平联使箱形弦杆与钢桥面组成整体断面共同受力,下层采用H形弦杆与交叉平联组成镂空层,采用斜杆受拉为主的横联,解决了铁路悬索桥钢梁的疲劳问题,同时具有较好的经济性。结合场地及运输条件,加劲梁分区段采用顶推、原位拼装、缆索吊结合的方案施工,解决了山区大跨度悬索桥的施工难题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号