首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
利用Creo软件建立了某型动车组头中尾3车编组和不同高度的路堤模型,通过Fluent软件模拟列车在车速分别为300和350 km·h-1,横风风速分别为17.10、20.70、24.40和28.40 m·s-1的环境下运行,将获取的高速列车气动力载荷施加到Simpack建立的动力学模型中,计算其动力学性能参数;深入分析了横风工况下高速列车在不同高度复线路堤背风侧运行时车体的压力分布、气流场结构、气动力与风致安全性,并重点探究了头车在不同运行速度和横风风速下的运行安全性。分析结果表明:在相同车速和横风环境下,随着路堤高度的增加,列车受到的侧向力整体呈增大趋势,尾车在横风作用下受到反向侧向力,头车所受侧向力最大,且升力持续增大,中间车所受升力相对较大,尾车所受阻力最大;横风环境下列车压力峰值点位于头车鼻尖处且向迎风侧偏移,各路堤高度工况下气流场结构基本相同,头车背风侧和底部转向架处有明显的涡流,但尾车处的涡流却在迎风侧,这可能是导致尾车反向侧向力的主因;脱轨系数、轮轴横向力、轮轨垂向力和轮重减载率均随路堤高度和横风风速的增大而增大,轮轨垂向力始终在安全限值内,当横风风速分别为24.40和28.40 m·s-1时,列车运行速度应分别低于350和300 km·h-1,以保证列车行车安全。   相似文献   

2.
从控制高铁运用安全风险角度出发,根据轨道车辆行业惯例,将曲线横风作为准静态风荷验证工况,按照强制性技术要求,把直线或大曲线通过车轮减载率控制在0.6以内.随着大超高曲线通过车速的提高,车体抗倾覆能力不断降低,特别是400 km/h轨道检测列车,在曲线横风下高速运行非常危险.根据诸如高架线路等具体情况,尽快给出风荷特性曲线以指导高铁运用安全监管.同时,也应当采用诸如风洞或水箱等先进试验手段,着重研究横向风荷的非稳态摄动影响,如隧道通过空气压力波动,以及驶离隧道时尾流扰动等,为解决高速列车稳定鲁棒性问题提供先决条件.  相似文献   

3.
纵向压力作用下重载机车与轨道的动态相互作用   总被引:1,自引:0,他引:1  
为了研究重载机车的轮轨动态安全性,考虑车钩纵向力对重载机车与轨道结构系统动力学性能的影响,根据实测车钩力和线路不平顺,对重载机车在直线轨道和曲线轨道上制动时的轮轨动态相互作用性能进行了仿真计算.研究结果表明,在纵向车钩力为1500kN,车钩自由角为3°的工况下,重载机车以80km/h的速度在直线轨道上和以60km/h的速度在曲线轨道上制动时,所有轮轨安全性能指标满足行车要求.  相似文献   

4.
为研究高速列车在强横风作用下通过曲线桥梁的安全性问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用所建立的模型计算了不同风速、不同车速、不同线路条件下作用于车体上的气动载荷,并且以脱轨系数、轮重减载率、倾覆系数、轮轴横向力和轮轨垂向力为运行安全性指标,分析了高速列车通过曲线桥梁的运行安全性.研究表明:横风下高速列车通过曲线桥梁时,列车的安全性受气动力和曲线超高双重影响.在低风速、低车速时,曲线超高对于列车安全性的影响起主要作用;随着风速变大,气动力对于列车安全性的影响远大于曲线过超高对于列车安全性的影响.在各工况中,当风从曲线桥梁的内侧吹向外侧,并且高速列车运行在曲线桥梁的迎风侧时,高速列车的最大安全风速最小,因此,在校核横风下高速列车过曲线桥梁安全性时,可以直接选用该工况来校核列车的安全性.  相似文献   

5.
建立了橡胶轮低地板拖车转向架车辆动态曲线通过分析模型并确定了有关的动力学参数.计算分析了以60km/h的最高速度和20km/h的实用速度分别通过半径为350m和50m的无超高曲线时的动力学特性.结果表明:承重轮胎侧偏力和导轮导向力均处于正常水平且轮重减栽率很小,从动力学方面证实了现行的橡胶轮低地板拖车转向架设计方案应用于市区地面的可行性.  相似文献   

6.
客运专线列车速度-间隔控制机理与计算   总被引:2,自引:0,他引:2  
给出了制动率、制动距离、作业时间等参数取值和最小追踪间隔的计算公式.不同的全制动距离阶段划分方式及其设备配置决定了高速客运专线信号控制及列车运行方式.列车的速度-间隔控制采用一次制动模式曲线方式并以速度分级模式曲线方式作为备用模式.缩短同方向列车到站追踪间隔是缩短追踪间隔的关键.对于速度大于250km/h的旅客列车,通过进站提前减速,用一次制动模式曲线方式能够实现3min追踪间隔.在客货混线运行条件下,当车站到发线有效长不大于1200m,咽喉区长度不大于800m,120km/h的货物列车制动率0.8时,能够实现5min追踪间隔;200km/h旅客列车采用制动率为0.6即能实现4min追踪间隔.  相似文献   

7.
随着高速列车运行速度的不断提高,紧急制动时制动盘的温度急剧增加,对其性能要求越来越高.根据传热学原理建立了高速列车动车制动盘的热-结构耦合模型,利用ANSYS软件对350 km/h动车组动车制动盘在紧急制动工况下的温度场和热应力场进行耦合仿真分析.结果表明:在57 s左右时,温度达到最大值418℃,满足锻钢对温度性能的...  相似文献   

8.
为研究在半堤半堑过渡段上行驶的高速列车在横风下的气动特性,以3编组高速列车作为研究对象,结合SST k-ω两方湍流方程,采用流体仿真软件Fluent对行驶速度分别为250,300 km/h和350 km/h,横风风速分别为15,20,25 m/s下半堤半堑路况上高速列车的气动特性进行了仿真研究。研究结果表明,在相同风速与相同车速下,头车受到的侧向力和倾覆力矩最大,中间车受到的气动升力最大;随着车速与风速的增大,各列车的气动特性值均有不同程度的增大;风速对列车侧向力和倾覆力矩的影响大于车速的影响。  相似文献   

9.
为获得抗侧滚扭杆在动车组运行时所受载荷的变化情况,结合陀螺仪和速度信号,研究了抗侧滚扭杆载荷随列车运行速度、曲线半径和曲线超高的变化规律;统计了不同速度级下抗侧滚扭杆载荷最值,并编制测试载荷谱、趋势载荷谱和动态载荷谱,计算趋势载荷与动态载荷在整个测试载荷中贡献的损伤比. 研究结果表明:直线工况下,抗侧滚扭杆动态载荷幅值随列车运行速度的增加而增加,当运行速度由250 km/h增大到350 km/h时,抗侧滚扭杆载荷幅值最大值增大了30%;在一定的过超高条件下,抗侧滚扭杆趋势载荷幅值随曲线半径减小而减小,240 km/h运行速度下最大载荷幅值由6.61 kN减小为3.54 kN;在曲线半径一定的条件下,抗侧滚扭杆趋势载荷幅值随曲线超高的增大而增大,240 km/h运行速度下最大载荷幅值由3.36 kN增大为5.80 kN.   相似文献   

10.
平地上高速列车的风致安全特性   总被引:6,自引:1,他引:5  
为研究高速列车在强侧风作用下安全行驶问题,基于空气动力学和多体系统动力学理论,建立了高速列车空气动力学模型和车辆系统动力学模型.应用该模型计算了不同风向角、不同风速和不同车速下作用于车体上的侧风气动载荷.根据高速列车整车试验规范,以脱轨系数、轮重减载率、轮轴横向力和轮轨垂向力为运行安全指标,分析了头车、中间车和尾车的运行安全性.研究表明:头车的安全性最差,且风向角为90°时,横风情况下最危险.随着车速的增大,最大安全风速急剧减小.当车速为200km/h时,最大安全风速为29.61 m/s;当车速为400 km/h时,最大安全风速为18.87m/s.  相似文献   

11.
以国产CRH3型3节车编组高速列车为研究对象,利用计算流体力学软件Star-CD/CCM+计算了在不同横风风速和不同车速下的列车气动力荷载;将该荷载导入动力学仿真软件SIM-PACK的列车运行动力学模型中,计算出在不同横风和车速条件下的脱轨系数、减载率和倾覆系数等运行稳定性参数.计算表明:头车的气动性能和运行稳定性受横风的影响最大;根据车辆动力学性能参数确定的列车安全速度限值与横风风速之间并非线性关系.参照有关高速列车运行稳定性评定标准,给出了不同横风风速下高速列车安全运行的速度限值.  相似文献   

12.
为探讨挡风墙对列车横向气动性能的影响,基于可压缩粘性流体Navier-Stokes方程和k-两方程湍流模型,采用有限体积法,计算了列车在直线和不同半径曲线线路上运行时,不同挡风墙高度和距离的275种工况下列车侧向力和侧翻力矩,获得了最佳挡风墙高度和距离.研究结果表明:在列车速度为200~400 km/h,风速为20~40 m/s的条件下,列车在直线线路上运行的最佳挡风墙高度和距离分别约为1.90和3.90 m;当弯道半径为1 000~7 000 m时,曲线线路最佳挡风墙高度随弯道半径增大线性减小,最佳挡风墙距离与弯道半径关系不大,约4.50 m;风速和列车速度对挡风墙的最佳高度和最优距离影响很小;如果挡风墙高度过低或距离过近,头车和尾车所受侧向力和侧翻力矩方向不同.   相似文献   

13.
高速动力车的平稳性分析   总被引:6,自引:3,他引:3  
在高速动力车的设计中为了获得良好的动力学性能,采用了许多与传统机车结构不同的新技术。本文根据高速动力车的结构,建立了合理的计算模型,用随机响应方法计算了高速动力车的平稳性指标和轮轨动作用力,介绍了平稳性和轮轨动作用力的评价标准,对高速动力车的运行平稳性和轮轨动作用水平作出了评价。  相似文献   

14.
为识别山区双车道公路货车移动遮断影响下的小客车驾驶行为,通过无人机拍摄和图像 处理提取车辆轨迹数据,根据车头时距、小客车横向位置曲线斜率的阈值标准,标定小客车的跟 驰、换道和超车这3种驾驶行为类别;采用Kruskal Wallis检验和主成分分析法对小客车驾驶行为 特征参数进行筛选和降维,获取识别模型输入变量;运用网格搜索算法确定核函数最优参数组 合,建立基于支持向量机(SVM)的货车移动遮断下小客车驾驶行为识别模型。以云南省典型山区 双车道公路为例,多维度分析货车移动遮断下的小客车驾驶行为特性,并对识别模型进行训练和 测试。结果表明:货车移动遮断下小客车的行车速度比自由流条件下低约20~30 km·h-1;小客车 在山区双车道跟驰货车行驶时的平均车头时距为2.53 s,小于相关规范中规定的最小安全车头时 距,跟驰行车风险较大;基于SVM的货车移动遮断下小客车驾驶行为识别模型的识别准确率达 98.41%,具有良好的识别能力和应用前景。  相似文献   

15.
为确定适合400 km/h高速铁路的荷载图式,参考《京沪高速铁路设计暂行规定》中确定0.8UIC荷载作为高速铁路列车荷载图式所使用的方法,以包络德国ICE列车、中国ZGS和中速列车的换算均布活载动效应为原则,提出将0.65UIC荷载作为400 km/h高速铁路列车荷载图式;然后,在时速400公里高速列车作用下,对24、32、40 m 3种跨度简支梁桥,基于车桥耦合振动分析方法得到车辆动力响应,在此基础上研究动力系数、竖向挠度、梁端竖向转角和轨面不平顺等现行规范指标在0.65UIC荷载条件下的适应性;最后,讨论采用0.65UIC荷载作为设计荷载时,离心力、牵引力和制动力限值对400 km/h高速铁路列车的适应性.结果表明:在现行规范基础上,将0.65UIC荷载作为400 km/h高速铁路列车荷载图式进行桥梁设计是可行的,采用该荷载图式计算的桥梁设计指标限值和设计荷载限值较运营车辆与桥梁间的响应具有一定安全储备.  相似文献   

16.
针对时速400km高速检测列车,建立了刚柔耦合的车辆非线性系统动力学模型,探讨了车下弹性悬挂系统的振动特性.通过仿真和理论分析,研究了检测列车整备状态车体结构模态参数与车下悬挂设备模态参数间的匹配关系,给出整备状态车体与车下有源设备最佳模态参数匹配原则,确定了车体与车下设备悬挂件最佳匹配参数.研究结果表明:该方法可以根据车下悬挂系统的动态响应,有效确定时速400km高速检测列车的最佳车下悬挂方案.  相似文献   

17.
高速列车侧风效应的数值模拟   总被引:1,自引:0,他引:1  
在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SST k-ω两方程湍流模型和有限体积法,对某型高速列车以350km/h的速度在25m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.  相似文献   

18.
为确定不同速度等级接触网弹性吊索参数的优选值,利用有限单元法,建立了中国高速铁路250、350 km/h两种速度等级的受电弓、接触网和弓网接触的动力学仿真模型,得到受电弓与接触网的动态性能指标,比较双弓作用下不同接触网弹性吊索截面积、张力和长度的弓网接触力数字特征和接触网定位点最大抬升. 研究结果表明:适应250 km/h的O2-1型接触网弹性吊索宜选用线型为JTMH 35 mm2、张力范围为(2.80 ± 0.10) kN,长度为14 m或18 m;适应350 km/h的京沪高速铁路接触网弹性吊索宜选用线型为JTMH 35 mm2、张力范围为(3.50 ± 0.10) kN,长度为18 m;弹性吊索参数变化对前弓的接触力影响较小,对后弓的接触力影响显著;250 km/h和350 km/h下弹性吊索长度22 m的定位点最大抬升分别是长度18 m的111%和117%,弹性吊索长度的变化对定位点最大抬升影响显著.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号