首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
工程中常采用的斜拉桥横向固定体系会增大桥墩、桥塔及其基础的抗震需求,从而增大斜拉桥在地震作用下的损伤破坏风险。为解决这一问题,以已研发的桥梁新型横向钢阻尼器为减震耗能装置,采用振动台试验方法,研究大跨度斜拉桥横向减震体系在近、远场地震作用下的减震效果。以苏通大桥为背景,设计1/35几何相似比的斜拉桥全桥试验模型,并分别进行横向减震体系和传统的横向固定体系的振动台试验。其中,将钢阻尼器与滑动型球钢支座并联布置于桥墩处、钢阻尼器布置于桥塔处形成横向减震体系。基于试验结果进行减震体系的减震行为分析。研究结果表明:在近、远场地震作用下,减震体系均能显著地减小主梁传递给桥墩和桥塔的地震力,其中墩梁、塔梁连接横向传力均减小50%以上,且将主梁位移限制在可接受范围内;减震体系也显著减小了塔身位移、曲率以及墩底曲率需求,其中,塔底截面曲率平均减小了34%,近塔辅助墩墩底曲率平均减小了67%;钢阻尼器拥有饱满的滞回曲线,但其滞回特性与地震输入有关;相对于支座的摩擦耗能,钢阻尼器的耗能能力更显著;在带有速度脉冲的近场地震作用下,钢阻尼器以及支座的位移响应具有明显的脉冲特点。  相似文献   

2.
波形钢腹板PC组合箱梁适用于不同结构形式的桥梁,相比普通混凝土箱梁具有显著的耐久性和经济性,波形钢腹板斜拉桥将波形钢腹板组合箱梁应用到斜拉桥中,充分发挥了2种结构的特点。南昌朝阳大桥主桥通航孔桥为(79+5×150+79) m波形钢腹板PC组合箱梁六塔连续单索面斜拉桥,上层布置双向8车道,下层布置人行和非机动车道。通过分析研究,该桥选择了较小的跨中比;由于塔数多,由中塔到边塔传递路径长,边跨设置辅助墩效应小,因此未设辅助墩。采用塔梁固结、梁墩分离的结构体系,箱梁宽43.84 m ,设置钢横隔板;斜拉索为单索面,扇形布置。桥塔外形呈“合”字形,桥塔处设置双支座。采用拉索减震支座作为上部结构的减隔震装置,布置在2个边塔下方。  相似文献   

3.
基于上海泖港大桥,采用非线性时程分析方法,对其采用的球钢支座并联叠层橡胶支座的复合隔震体系进行了抗震性能分析。结果表明:边墩处与主墩处叠层橡胶支座刚度比为1∶3,同时,支座刚度分别为16 000 k N/m与48 000 k N/m时,结构响应最为合理,全桥抗震性能满足要求。该桥采用的复合隔震体系利用了球钢支座的摩擦耗能性能和叠层橡胶支座的水平剪切性能,具有受力明确、构造简单、经济可行、减震效果好的特点,具有较大推广应用价值。  相似文献   

4.
为研究斜拉桥横向减震体系的减震行为,以一座高低塔曲线斜拉桥为工程背景,结合桥梁新型横向钢阻尼器,给出了可行的斜拉桥全桥横向减震体系的优化设计方法,并与横向固定体系进行比较,分析了其减震效果。研究表明:地震作用下,斜拉桥横向减震体系能显著减小桥墩及其基础的地震需求,亦能一定程度上减小桥塔及其基础的地震需求,同时,将主梁的地震位移控制在合理范围内;钢阻尼器的滞回耗能能力明显优于摩擦型支座。  相似文献   

5.
秀山大桥为双塔三跨钢箱梁结构悬索桥,其跨径为264m+926m+357m=1547m,官山侧主塔采用扩大基础结构,秀山侧主塔采用承台和桩基础结构,官山侧和秀山侧锚碇均采用重力锚结构。秀山侧主塔位置海床基岩裸露,倾斜角度大,无覆盖层,且水深流急,最大水深为16. 1m,最大流速可达4m/s,根据图纸要求承台采用双壁钢围堰施工,且钢围堰作为防撞消能设施永久保留,钢围堰的设计、施工难度大,国内少见,可借鉴的施工经验也较少,秀山侧主塔承台钢围堰的顺利实施为今后在类似复杂海况下桥梁基础施工提供了一定的应用价值和参考价值。  相似文献   

6.
洲心大桥为广东省清远市跨越北江的一座大型公路兼城市道路桥梁,主桥为双塔宽幅单索面支承体系混合梁斜拉桥,跨径布置为100 m+218 m+100m,桥宽43 m,不对称曲线造型桥塔,塔梁固结,塔墩采用测力调力球型支座连接,桩基施工采用双液旋喷注浆技术形成人造持力层,行车道桥面板采用钢-超高性能混凝土组合桥面,桥面排水采用新型排水构造设计等.重点介绍了该桥的总体设计与关键技术.  相似文献   

7.
采用有限元ANSYS建立空间动力计算模型,对比铅芯橡胶支座、减振球型支座、摩擦摆支座在地震力作用下的受力性能,并以新南港大桥70 m+4×120 m+70 m PC连续箱梁为研究对象,分析不同减隔震支座在大跨长联预应力连续梁中的受力特点和支座性能,提出适合该桥的减隔震措施。  相似文献   

8.
运用SAP2000进行数值分析,对比了设置隔震支座、设置钢阻尼器以及两种装置混合设置在一起结构的消能效果,并对层间剪力、结构顶点位移曲线等参数进行对比分析。结果表明,混合消能减震结构具有很好的消能效果,比设置单一消能构件的结构具有更加优越的减震效果,可以使目标建筑结构的抗震性能得到显著提高。  相似文献   

9.
《中外公路》2021,41(3):89-91
生野大桥是一座7跨波纹钢腹板PC矮塔斜拉桥,位于日本兵库县神户市和高津交界处的新名神(名古屋至神户)高速公路上。大桥全长606 m,主跨188 m,是日本最大跨度的波形钢腹板矮塔斜拉桥。为加快桥梁施工进度,该桥采用了多种特殊施工措施。如:在P6号墩顶处顶推法施工、超大型挂篮悬臂法施工、预制混凝土防撞护栏施工等。该桥主塔斜拉索采用37S15.2钢绞线拉索双排布置方案;为解决尾流驰振引起的拉索振动问题,通过风洞试验分析,选取摩擦型阻尼器作为拉索减震装置。  相似文献   

10.
山东济宁如意洸府河大桥主桥采用(60+80+320+80+60)m支座体系混合式结合梁斜拉桥。该桥边跨采用混凝土边主梁,中跨采用钢小边箱结合梁,桥塔采用H形混凝土塔,其基础采用钻孔摩擦桩,结构体系采用支座体系。主桥全宽40m,梁高2.7m,小角度斜跨繁忙运输的电气化铁路线,设双向2.0%横坡、双向2.5%纵坡。桥塔上横梁外挂椭圆形装饰罩,呈拱形门造型。针对该桥实际建桥条件,进行了桥型(支座体系混合式结合梁斜拉桥)、结构(PBL剪力键与剪力钉复合型钢-混结合段)、施工方法(完全依靠汽车吊安装斜拉桥主跨主梁及在结合梁斜拉桥中进行限时合龙)等方面的技术创新。  相似文献   

11.
桥梁工程结构的减震隔震设计多采用增加阻尼和被动控制的思想与方法,即通过消能来达到减震抗震的目的。以宜万铁路叶溪河大桥为例,阐述了减震隔震的设计方法以及支座施工应注意的事项。  相似文献   

12.
为了解拉索减震支座对刚构桥横向抗震性能的影响,以某(65+120+65)m预应力混凝土连续刚构桥为背景进行研究。基于拉索减震支座的抗震机理,采用MIDAS Civil(V8.0.5)软件建模,应用非线性动力时程方法分析该桥横向地震响应,并比较拉索减震支座参数(初始间隙及拉索刚度)对该桥抗震性能的影响。结果表明:拉索减震支座可有效降低刚构桥过渡墩的横向受力,同时可有效控制刚构桥主梁的运动形态;拉索减震支座对主墩抗震性能的影响较小;初始间隙越小、拉索刚度越大,拉索减震支座对主梁的约束作用越大。  相似文献   

13.
为优化粘滞阻尼器对双塔斜拉桥的减震效果,以淮安大桥(主跨为416m的双塔斜拉桥)为背景进行研究。采用有限元软件SAP2000建立全桥三维有限元模型,应用非线性动力时程方法对比分析了4种不同阻尼器布设方案(分别将粘滞阻尼器布设在塔支座、桥台、边墩和桥台、边墩位置)的减震效果。选择最优方案进行阻尼参数分析,应用最小二乘回归分析法建立关键截面参数与阻尼参数之间的数学模型,以控制截面内力和变形最小为原则,通过求解拟合方程的极值得到最优设计参数。结果表明:在桥台位置安装粘滞阻尼器能使其更好地发挥减震功能,且不改变辅助墩的受力;所提出的阻尼参数优化设计方法能有效地计算出最优阻尼参数,为设计提供方便。  相似文献   

14.
为研究高烈度地区多跨长联连续梁桥采用不同抗震方案时的抗震性能,以北溪大桥主桥(36+4×60+36)m连续梁桥为背景,分别采用传统盆式支座,高低不同阻尼铅芯支座,拉索支座等不同组合方案,采用Midas Civil 2017软件建立全桥有限元模型,比较不同支座布置方案的罕遇地震作用下的地震响应。  相似文献   

15.
张聪正  苑洁艺  刘洋  刘得运 《公路》2023,(3):164-169
为了探究沙坡头黄河大桥合理的约束体系,从而减小桥梁结构的地震响应,以沙坡头黄河大桥为研究对象,利用SAP2000软件,采用非线性时程分析方法开展了不同约束体系下桥梁地震响应的对比分析,提出了纵向在主塔位置设置黏滞阻尼器,横向在主塔和桥墩处设置黏滞阻尼器和摩擦摆支座的减震阻尼体系。结果表明,采用该体系,塔底弯矩降低了34%,主塔和过渡墩处的支座纵向位移降低了55%以上;纵向阻尼系数主塔处取4 000、过渡墩处取3 000,横向阻尼系数主塔处取4 000、过渡墩处取2 000,是较为合理的。  相似文献   

16.
唐志  刘军  徐向东  张小锋 《中外公路》2019,39(2):125-129
以陕西省某(20+33+20)m连续梁桥为工程背景建立有限元模型,分别对采用普通橡胶支座及ε型钢阻尼减震支座方案的桥梁内力、位移响应进行了计算和分析,计算结果表明:ε型钢阻尼减震支座的滞回曲线饱满,具有良好耗能减震作用,采用ε型钢阻尼减震支座可有效地减小桥梁各墩柱地震力,同时桥梁梁端位移也大大减小。  相似文献   

17.
温州瓯江北口大桥主桥初步设计为(230+2×800+358)m三塔四跨悬索桥,中塔采用混凝土A形塔。为得到三塔四跨悬索桥合理的支撑体系方案,优化结构性能并降低设计难度,以该桥单层分离式钢箱梁方案为背景,提出5种中塔支撑体系方案、4种边塔支撑体系方案,采用BNLAS软件建立主桥空间有限元计算模型,分析主缆抗滑安全系数、支座反力、塔侧吊索内力、主梁应力、桥塔应力。结果表明:中塔、分离式钢箱梁采用四跨连续体系,在中塔横梁上纵向设置1排支座、横向间距40.5m设置2个支座,在边塔横梁上纵向设置1排支座、横向间距30.9m设置3个支座时的结构受力性能最优。  相似文献   

18.
九江长江公路大桥主桥为(70+75+84+818+233.5+124.5)m六跨不对称双塔双索面混合梁斜拉桥,南边跨及部分中跨为混凝土箱梁,其余为钢箱梁,钢箱梁采用双悬臂拼装施工工艺。为保证钢箱梁双悬臂施工期不平衡力作用下的结构及施工安全,在北塔与钢箱梁间设置了竖向、横向及纵向临时约束:通过钢绞线将设置在北塔下横梁上的竖向混凝土支墩和钢箱梁底部的钢支墩连成整体,形成竖向临时约束;竖向临时约束兼作钢箱梁双悬臂施工期间的纵向临时约束,主要由竖向临时约束产生的摩擦力抵抗在悬臂吊装过程中产生的不平衡力;在合龙阶段增设顶推装置进行纵向临时约束,兼做中跨顶推辅助合龙的顶推装置;横向临时约束主要由抗风支座和塔梁间的临时钢支墩实现。  相似文献   

19.
温州瓯江北口大桥主桥初步设计为(230+2×800+358)m三塔四跨悬索桥,中塔采用混凝土A形塔。为得到三塔四跨悬索桥合理的支撑体系方案,优化结构性能并降低设计难度,以该桥单层分离式钢箱梁方案为背景,提出5种中塔支撑体系方案、4种边塔支撑体系方案,采用BNLAS软件建立主桥空间有限元计算模型,分析主缆抗滑安全系数、支座反力、塔侧吊索内力、主梁应力、桥塔应力。结果表明:中塔、分离式钢箱梁采用四跨连续体系,在中塔横梁上纵向设置1排支座、横向间距40.5m设置2个支座,在边塔横梁上纵向设置1排支座、横向间距30.9m设置3个支座时的结构受力性能最优。  相似文献   

20.
正日本新名神高速公路生野大桥(Ikuno Bridge,见图1)位于兵库县神户市北区,是一座桥长606m的7跨连续波形钢腹板预应力混凝土低塔斜拉桥。该桥主跨188m,斜交15°跨越铁路营运线,是日本目前最大跨度的波形钢腹板低塔斜拉桥。该桥跨径布置为(96.2+188.0+103.0+2×39.0+71.0+66.2)m,桥面宽24.15~25.15m,荷载为B活荷  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号