首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
采用二维大涡模拟方法对雷诺数为Re =3.73×105的某大跨度斜拉桥主梁断面成桥状态和施工状态三分力系数进行了数值模拟,并与风洞试验结果进行了对比;在此基础上针对防撞护栏对桥梁主梁断面的三分力系数的影响进行了数值模拟和试验研究.结果显示:该桥主梁断面成桥状态、施工状态三分力系数数值模拟结果与风洞试验结果吻合良好.风攻...  相似文献   

2.
为寻求合理的模型长宽比、二元端板形式,减小这些参数对桥梁节段模型风洞试验的影响,制作流线型与钝体2种断面主梁节段模型,在风洞实验室对节段模型进行测力与测压试验,分析这些参数变化对三分力系数等结果的影响。试验结果表明:建议节段模型的长宽比大于2∶1且小于4∶1,以保证三分力系数的稳定性和可靠性,同时使节段模型具有较好的展向相关性;尽可能选择较大的二元端板,条件受限时二元端板的宽度与主梁宽度之比大于1.4,以使模型端部较好地实现二元流动特性,降低其对三分力系数的影响;流线型断面主梁节段模型较钝体断面的易受二元端板形式的影响;三分力系数对二元端板的敏感程度明显小于对节段模型长宽比的敏感程度。  相似文献   

3.
为提高风洞试验数据的可靠性、了解节段模型端部效应对试验结果的影响,通过风洞试验与数值模拟相结合的方法针对典型桥梁断面制作多组不同长宽比的节段模型研究了节段模型长宽比对三分力系数的影响。利用不同长宽比节段模型试验得到的三分力系数,分析三分力试验误差对静风稳定性及抖振响应的影响。为进一步扩大模型长宽比的研究范围,借助了CFD方法重现风洞试验,在保证数值模拟精度的前提下开展了多个长宽比模型的气动力与流场分析,系统总结不同长宽比模型端部效应的影响规律。分析结果表明:为保证测力试验结果的精度和稳定性,节段模型长宽比建议大于等于3,对于流线型箱梁断面,可以适当放宽要求,节段模型长宽比应大于等于2;当长宽比小于建议值,得到的静风稳定结果和抖振响应结果偏危险,长宽比越小,偏差越大;流线型箱梁阻力系数单侧"影响区"的量纲一的长度约1,升力矩系数单侧"影响区"量纲一的长度约为0.6,升力系数的单侧"影响区"量纲一的长度明显远大于其他气动力系数。流线型断面顶板、底板的压力分布对长宽比的变化较为敏感,上、下游侧斜腹板的压力分布受长宽比的影响较小。  相似文献   

4.
基于计算流体动力学(CFD),以某高墩大跨连续刚构桥的典型断面为背景进行数值模拟,引入无量纲的静力三分力系数概念,对比分析风攻角、梁高等参数对桥梁主梁截面气动力特性的影响,并结合可视化流场分析其作用机理。结果表明,CFD方法能直观分析钝体绕流特征及结构的气动力特性;箱梁断面升力系数受风攻角的影响较大,阻力系数受梁高的影响较大;梁高越大,主梁截面的三分力系数随风攻角变化的幅度越小,流场分布越复杂。  相似文献   

5.
以计算流体力学(CFD)数值模拟方法对大跨度连续桥梁抗风性能进行分析,与风洞试验数据对比,从理论与实际两方面研究可知:通过与风洞试验所得三分力系数(阻力系数、升力系数、升力矩系数)对比可知模拟值与试验值变化趋势完全一致,模拟值略大于试验值的6%左右,因此对模拟值进行修正后可作为桥梁抗风性能设计参考。对箱梁跨中断面以及四分点断面流场模拟可知在风流情况下箱梁最大正压力集中于箱梁迎风面的上、下两棱角处,风速在梁底棱角处以及前缘尖锐棱角处出现严重分离。箱梁跨中断面计算值大于四分点断面计算值,抗风设计时可根据跨中断面作为设计基准。  相似文献   

6.
宁波舟山港主通道舟岱大桥北通航孔桥为(125+250+125)m钢-混混合梁连续刚构桥,除主跨跨中85m范围主梁采用钢箱梁外,其余均采用变截面混凝土箱梁。该桥主墩墩顶混凝土主梁采用分块现浇,其余混凝土主梁采用节段预制、悬臂拼装法施工;主跨跨中钢箱梁采用2台桥面吊机整体起吊合龙。采用MIDAS Civil软件建立有限元模型,模拟桥梁施工过程,结合有限元计算进行该桥施工控制。施工中,考虑施工阶段、活载和运营阶段位移进行主梁制造预拱度控制;通过负误差动态控制主梁预制长度和角度误差;通过精确定位基准梁和调整环氧树脂胶厚度控制主梁拼装误差;通过对环境温度、合龙段吊装时钢-混结合段变形和钢箱梁变形修正进行钢箱梁制造长度控制。通过以上施工控制关键技术,混凝土主梁拼装完成时主梁轴线和高程最大悬臂拼装误差分别为15.1mm和1.4mm,钢箱梁合龙后精度在10mm以内,满足设计要求。  相似文献   

7.
波形钢腹板组合箱梁桥与钢筋混凝土箱梁桥一样,箱梁翼板也存在剪力滞效应.为研究大跨度变截面波形钢腹板组合连续箱梁的剪力滞效应,采用ANSYS的APDL参数化建模方法建立了典型的三跨式波形钢腹板组合连续箱梁桥的有限元模型,计算分析了集中(均布)荷载作用下变截面箱梁几何参数(腹板尺寸、宽高比、宽跨比、变截面)对于剪力滞系数的...  相似文献   

8.
闫兴非  张涛  汪罗英  彭俊 《城市道桥与防洪》2020,(3):50-52,M0008,M0009
平申线航道(上海段)整治工程中泖港大桥主桥为一座预应力混凝土箱梁与钢箱梁混合而成的桥梁,桥梁的总体跨径布置为65 m+135 m+65 m,其中主跨跨中55 m范围布置了钢箱梁其他部分布置为预应力混凝土连续梁。该桥的主梁在中间桥墩处梁高为7.2 m,高跨比为1/18.75,跨中梁高3.2 m,高跨比1/42.18,混凝土部分箱梁梁底按2次抛物线变化,钢箱梁采用等截面形式。对该桥采用ANSYS软件建立板壳实体模型进行主桥整体分析表明,该桥各个结构部位的受力满足规范要求。该桥的施工方法采用了悬臂对称浇筑混凝土梁段、支架上浇筑边跨混凝土合龙段、施工钢混结合段以及整体吊装钢箱梁节段等。运营情况表明该混合梁结构形式具有优良的力学性能,可供类似工程参考。  相似文献   

9.
以某主跨390 m的独塔流线型钢箱梁斜拉桥为工程依托,采用风洞试验与计算流体动力学(Computational Fluid Dynamics,CFD)相结合的方法对流线型钢箱梁涡激振动机理与气动控制措施进行研究。首先,采用几何缩尺比为1∶30的主梁节段模型进行主梁涡振性能与气动控制措施优化研究;其次,采用CFD方法对主梁涡振响应进行流固耦合计算,将Newmark-β算法嵌入ANSYS Fluent用户自定义函数(User Defined Functions,UDFs)实现主梁结构振动响应求解,同时结合动网格技术实现主梁断面流固耦合分析;并根据判断条件来检索箱梁壁面上的网格单元,以获得主梁断面振动过程中的表面压力,然后结合主梁结构振动响应、表面压力以及流场特征等对主梁涡激振动机理进行分析。结果表明:该桥主梁原设计方案存在涡激共振现象,将梁底检修车轨道内移120 cm可有效抑制主梁涡振响应;主梁涡激振动响应的数值模拟结果与风洞试验结果吻合较好;检修车轨道内移120 cm后主要改变了箱梁下表面平均压力系数分布特性,且箱梁表面各测点脉动压力卓越频率不一致,有效减小了主梁涡激振动响应;流线型箱梁靠近迎风侧的“被动区域”对结构涡振响应贡献较小,背风侧“驱动区域”发生周期性旋涡脱落是影响流线型箱梁涡振的主要因素。  相似文献   

10.
王金  陈常松 《中外公路》2023,(4):105-109
为了研究剪切变形对悬臂拼装钢箱梁桥主梁制造线形和安装线形的影响,更好地设计成桥状态。该文通过有限元方法计算钢箱梁截面的剪应力不均匀系数,并与钢箱梁板壳单元实体模型进行对比。结果表明:有限元软件计算的剪应力不均匀系数精确可靠,经过简单的模型计算,指出剪切变形使得主梁制造线形和主梁安装线形发生改变,忽视剪切变形会影响新旧梁段上、下翼板的拼装缝,最终影响成桥线形的平顺性;对比采用悬臂拼装的某大跨度斜拉桥考虑剪切变形前、后主梁制造线形和主梁安装线形的变化,指出剪切变形对制造线形和安装线形的重要性。  相似文献   

11.
坝陵河大桥节段模型风洞试验研究   总被引:4,自引:3,他引:1  
通过坝陵河大桥的节段模型风洞试验获得了主梁的静力三分力系数、主梁的颤振特性以及识别了主梁的8个颤振导数,并对试验结果进行了详细的分析,其分析评价的结果可用于指导该桥的设计与施工,也可为同类桥梁提供参考.  相似文献   

12.
应用数值模拟方法研究桥梁断面的雷诺数效应,采用计算流体力学(CFD)软件FIUENT中的3种不同的湍流模型,即标准κ-ε模型、雷诺应力方程模型及Spalart-Allmaras模型,对流线形桥梁断面的三分力系数随雷诺数的变化进行数值模拟计算,并将数值计算结果与高雷诺数风洞试验结果进行比较.计算结果表明:数值模拟结果与风洞试验结果非常接近,阻力系数的最大误差不超过4%;升力系数的计算结果比试验结果要大,相对误差不超过3%;当雷诺数小于6.0×105时,升力矩系数的计算结果比试验结果要小,雷诺数大于6.0×105时,升力矩系数的计算结果比试验结果大,计算误差不超过6%.研究进一步证实了流线型轿梁断面存在着三分力系数的雷诺数效应.对于流线型桥梁断面,宜采用标准κ-ε模型对其三分力系数进行数值模拟计算,计算结果能够符合精度要求.  相似文献   

13.
港珠澳大桥深水区非通航孔桥为110m跨连续梁桥,主梁为等截面钢箱梁,宽33.1m,高4.5m。该桥钢箱梁采用大节段逐跨吊装施工,为了确保最终的成桥线形满足设计要求,在大节段钢箱梁制造阶段,基于梁段的真实重量准确计算了无应力制造线形,同时合理布置支墩,使大节段钢箱梁组拼时处于近似无应力状态;在吊装阶段,保持大节段钢箱梁吊装、搭接平稳,确保钢箱梁和临时牛腿结构安全;在安装阶段,考虑制造误差、体系转换及温度等因素,控制钢箱梁的梁长,合理地设置支座预偏量,并选择在温度平稳的时段内进行大节段钢箱梁的匹配。通过对大节段钢箱梁施工的全过程控制,首联钢箱梁线形实测值与理论值的误差控制在13mm之内,桥梁线形控制取得了良好的效果。  相似文献   

14.
桃花峪黄河大桥主桥为主跨406m的大跨度钢箱梁自锚式悬索桥。该桥吊杆-主梁锚固区采用锚箱式锚固结构,由布置在钢箱梁腹板外侧的锚固板、承压板及加劲板等组成,板杆空间交错,受力复杂。为验证该桥锚固区受力的合理性,采用ANSYS建立主梁空间节段有限元模型,对锚固区各板件的受力状况、锚固板件与箱梁外腹板焊缝受力特性及吊杆索力的扩散规律进行了分析,得到锚固区的受力特性。结果表明:吊杆索力通过锚头锚圈、垫板、承压板、锚固板、主梁腹板传递扩散到整个钢箱梁断面;锚固区各板件应力均满足规范要求,结构受力合理且应力在各板件间传递流畅。  相似文献   

15.
重庆轨道10号线南纪门轨道交通专用桥引桥为(2×70+65)m等截面连续钢箱梁桥,主梁采用钢箱叠合梁,宽22.2m,钢箱梁采用分离式双箱截面形式,分为19个节段、总重2 600t。由于引桥位于缓和曲线、跨越6条既有线,钢箱梁采用顶推方案施工。采用MIDAS Civil软件建立钢箱梁顶推施工空间模型,模拟钢箱梁顶推过程。结果表明,顶推过程稳定,钢箱梁及导梁结构强度满足规范要求。顶推施工中,设置了临时墩、钢箱梁提升站、顶推平台、导梁等临时结构;利用1 000t智能步履式顶推设备进行多点同步连续顶推,并采用了中线实时动态纠偏技术、钢箱梁横桥向高差控制技术、首跨顶推配重调节技术、导梁前端过墩技术,完成了该桥钢箱梁顶推施工。  相似文献   

16.
酉水大桥是一座主跨为(80+145 +80)m的三跨预应力混凝土变截面连续梁桥,并将主墩做成与水流一致(与路线方向成约65°)的斜高墩以满足行洪要求,主梁0号块采用托架现浇,边跨直线段采用贝雷片吊架现浇,其余1~18号块均采用挂篮悬臂浇筑,主梁的线形控制较为关键,结合该桥主梁线形控制的施工实际,介绍了主梁的施工方案、线形控制的目的和要点、线形控制计算分析方法.重点阐述了箱梁立模高程的计算过程和箱梁高程测控的布点和监控方法,为今后同类施工提供参考.  相似文献   

17.
娄江大桥为娄江航道上一座(83+145+83)m三跨变截面预应力混凝土连续箱梁桥,具有大跨小半径变宽度结构特点,常规的施工方案难度和风险大。项目中跨采用挂篮节段悬浇施工,边跨采用支架节段现浇施工,成功解决了不断航情况下大跨小半径变宽度三跨变截面预应力混凝土连续梁桥的设计及施工方法问题。建议利用梁格模型或者空间网格模型作为补充验算,对空间梁单元模型所采用的经验系数进行修正后进一步验算。  相似文献   

18.
基于计算流体力学方法,以深圳市拟建山谷沟壑处景观桥为研究对象,建立三维仿真节段模型进行气动性能研究。首先研究节段桁架模型在对称边界条件下的合理性,得出可以利用节段模型来代替三维整桥进行数值模拟。然后通过比较三维整桥模拟与国内现行规范中桁架桥气动参数选取方法,做出检验并提出改进建议。以桁架桥结构截面的外轮廓和实面积比作为控制条件建立二维等效模型,采用4种二维圆管桁主梁CFD计算简化模型,并计算了在-5°、-3°、0°、3°、5°攻角情况下的桁架桥梁静力三分力系数。同时基于非定常时程曲线,对4种二维等效模型附近的空间流场结构、涡振性能差异进行了对比。  相似文献   

19.
计算流体力学方法的发展给风工程提供了一种可能替代风洞试验的研究手段。以一斜拉桥为模型,采用FLUENT软件分析主梁断面在0°攻角下的速度和压强分布,并得到主梁断面在攻角-5~5°范围内的静三分力系数,为抗风计算提供依据。  相似文献   

20.
西堠门大桥成桥及施工状态下的空气动力特性研究   总被引:1,自引:0,他引:1  
主要介绍针对西堠门大桥的运营阶段和施工阶段开展的一系列风洞试验研究,包括正交风和非正交风作用下主梁静力系数测定、1:20大尺度主梁节段模型涡激振动试验,以及1 :124全桥气动弹性模型风洞试验.最后,本文还给出了西堠门大桥现场实测的初步结果,主要为台风"云娜"的风谱以及此时主梁断面风压的分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号