首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为简化并准确分析波形钢腹板组合箱梁剪力滞效应,基于波形钢腹板组合箱梁能量变分法微分方程,考虑波形钢腹板剪切变形及体外预应力作用,采用有限梁段法推导得到梁段单元的系数矩阵和广义外荷载向量计算公式,求解波形钢腹板组合箱梁任意点的弯曲应力。以某等截面波形钢腹板组合简支试验梁为算例,将跨中截面正应力有限梁段法计算值与试验值、变分法及有限元法计算值进行对比,该方法跨中正应力分布与其它方法结果均吻合较好,顶板有限梁段法正应力峰值与有限元计算值相差仅1.6%,验证了该方法准确度较高。采用该方法分析伊朗德黑兰BR-06L/R特大桥波形钢腹板组合连续箱梁桥在悬臂施工及成桥阶段的剪力滞效应,结果表明:悬臂施工阶段,随着悬臂长度增加固定端剪力滞效应逐渐减弱;成桥阶段,中支点和集中荷载加载点处剪力滞效应非常显著,均布荷载作用下边跨正弯矩区剪力滞系数较大,中支点处的峰值为1.13。  相似文献   

2.
由于单箱多室波形钢腹板PC组合箱梁截面剪力滞效应与混凝土箱梁截面剪力滞效应相比有很大差异,并且波形钢腹板几乎承担了全部剪力,波形钢腹板的剪切模量也需要进行修正。为研究单箱多室波形钢腹板PC组合箱梁的剪力滞效应,从波形钢腹板PC组合箱梁的受力特点出发,以满足剪力滞翘曲应力的轴向平衡条件,采用二次、三次抛物线定义了单箱双室、单箱三室波形钢腹板PC组合箱梁的纵向位移差函数,利用势能驻值原理的能量变分法建立了波形钢腹板PC组合箱梁考虑剪力滞、剪切变形效应的控制微分方程组,并推导出简支梁、悬臂梁、连续梁在集中荷载、均布荷载作用下的解析解。通过解析法和有限元法分别计算了简支梁和悬臂梁的剪力滞效应,并研究了集中荷载和满跨均布荷载作用下的单箱多室波形钢腹板PC组合箱梁的剪力滞分布规律,结果表明:采用二次抛物线剪力滞翘曲位移函数推导的剪力滞系数更为合理;单箱多室波形钢腹板PC组合箱梁在跨中集中荷载下,波形钢腹板与混凝土顶、底板交界处的剪力滞效应较为突出;随着波形钢腹板PC箱梁室数的增加,剪力滞系数明显减少,且解析解与有限元数值解一致,表明了解析解的正确性,并通过分析给出了相应的剪力滞系数,可以为单箱多室波形钢腹板箱梁的设计计算提供参考依据。  相似文献   

3.
波形钢腹板组合箱梁桥与钢筋混凝土箱梁桥一样,箱梁翼板也存在剪力滞效应.为研究大跨度变截面波形钢腹板组合连续箱梁的剪力滞效应,采用ANSYS的APDL参数化建模方法建立了典型的三跨式波形钢腹板组合连续箱梁桥的有限元模型,计算分析了集中(均布)荷载作用下变截面箱梁几何参数(腹板尺寸、宽高比、宽跨比、变截面)对于剪力滞系数的...  相似文献   

4.
目前关于横隔梁对波形钢腹板PC连续梁桥纵向正应力的影响,都是基于小梁试验或理论分析的基础,与实际有差别。鉴于此,依托一在建单箱九室波形钢腹板PC组合连续箱梁桥,建立该桥有限元模型,分析3车道偏载作用下有无横隔梁2个工况下箱梁顶、底板的纵向正应力分布规律和剪力滞效应。结果表明:未设横隔梁的桥梁纵向正应力分布变化剧烈,距墩顶越近,顶、底板正应力横向分布变化越大;设置横隔梁后桥梁纵向正应力分布较为均匀,顶、底板正应力横向分布在跨中截面附近变化较大;未设横隔梁与设置横隔梁时顶、底板正应力最大比值分别为1.47、1.32;设置横隔梁的桥梁在汽车荷载下剪力滞效应最大,3车道偏载与6车道对称荷载作用下箱梁顶板剪力滞系数比值为1.04,底板剪力滞系数比值为1.06;横隔梁对改善箱梁正应力分布、降低剪力滞程度具有显著影响。  相似文献   

5.
为了解波形钢腹板多室箱梁部分斜拉桥剪力滞效应对结构受力的影响,以某(58+118+188+108) m单箱四室波形钢腹板部分斜拉桥为背景,采用有限元法建立空间有限元模型,在跨中偏载和对称荷载作用下,计算主跨箱梁有索段和无索段顶底板混凝土正应力,分析各截面的剪力滞分布规律。结果表明:箱梁跨中截面混凝土顶板、底板正应力分布极不均匀,具有明显的剪力滞效应,箱梁混凝土顶板、底板剪力滞系数随距集中荷载作用点距离的增大急剧减小,截面顶板剪力滞效应均比底板大;箱梁顶底板均呈现正剪力滞效应,混凝土横隔板可以改善箱梁截面正应力分布,减弱剪力滞效应;顶底板剪力滞系数在无索段范围内急剧减小,有索段内急剧增大,车辆活载只在局部范围内引起较大的剪力滞效应,设计中应考虑此效应引起的不均匀应力。  相似文献   

6.
为了更精确地研究考虑剪切剪滞双重效应波形钢腹板组合箱梁的力学性能,首先运用有限元分析方法,在综合考虑剪力滞与剪切变形双重效应影响的基础上,通过能量变分原理导出了波形钢腹板组合箱梁的控制微分方程并给出了解析解;之后在该解析解的基础上进一步推导了单元刚度矩阵及结点荷载列阵,还根据相关方程编制了FORTRAN有限元程序;最后将室内模型试验梁对波形钢腹板简支梁和连续梁的实测结果与所提理论的计算结果、ANSYS实体单元模型的计算结果进行对比分析。结果表明:所提理论和模型试验、有限元模拟3种方法所得剪力滞系数和挠度值吻合良好,且理论计算值与模型试验实测值所得跨中剪力滞系数、挠度值更接近;简支梁在承受集中荷载作用比承受均布荷载作用同一截面处的剪力滞效应影响大,连续梁在承受集中载荷作用时,在支座附近处截面的剪力滞效应的影响比跨中要大,并在靠近弯矩零点的一部分区域内表现出负剪力滞现象;波形钢腹板简支梁、连续梁的剪力滞系数随跨宽比的增大而呈曲线减小。研究成果可将波形钢腹板考虑双重效应的复杂计算问题,方便地纳入普通杆系结构矩阵位移结构体系中,可直接得到用于结构设计的剪力、弯矩,从而避免建立复杂的ANSYS有限元模型。  相似文献   

7.
为客观准确地对单箱多室波形钢腹板PC组合箱梁的剪力滞效应进行评价,结合单箱多室混凝土箱梁的计算特点,定义了波形钢腹板箱梁的剪滞翘曲位移函数,通过能量变分法建立了单箱双室和单箱三室波形钢腹板箱梁考虑剪力滞效应的基本微分方程。分别采用有限元方法和解析方法分析计算了范例的剪力滞效应,研究了跨中集中荷载和满跨均布载荷作用下截面的剪力滞分布规律,探讨了跨宽比对剪力滞效应的影响。研究表明,该解析解与有限元数值解吻合较好,但在箱梁顶底板与波形钢腹板接合处、外伸悬臂板边缘处有一些差异,需要进行修正。研究给出了相关的剪力滞系数,可以为波形钢腹板箱梁设计时的剪力滞系数取值提供参考。  相似文献   

8.
为掌握荷载横向作用位置对单箱三室波形钢腹板PC组合箱梁受力性能的影响,设计制作了缩尺比例为1∶10的模型梁,对简支模型梁分别进行了横向对称的双点和四点集中力弹性加载试验,集中力在横向分布作用在边、中腹板处顶板,对顶、底板的纵向应变、钢腹板剪应变和梁底挠度进行了测试。同时,建立有限元模型进行对比分析,并提出用腹板剪力系数表示"腹板剪力分配的不均匀程度"。结果表明:对于单箱三室的波形钢腹板混凝土组合箱梁,对称荷载的横向作用位置对作用截面的剪力滞系数横向分布有显著影响,不同腹板处顶、底板剪力滞系数的差异较大,在荷载作用点附近达最大值;加载截面横隔板的设置可以减弱剪力滞效应,而非加载截面的横隔板使顶、底板正应力分布呈现类似"负剪力滞效应";剪力在各钢腹板间不是平均分配,直接承受集中荷载的腹板可分担70%以上的剪力,其剪力系数最大可达2.0;横隔板可减小剪力不均匀分配的影响。  相似文献   

9.
以3跨变截面箱梁弯连续刚构桥为研究对象,分别采用平面有限元和空间有限元方法计算了自重作用下控制截面的剪力滞系数,并对剪力滞效应进行了分析,主要对弯曲半径、宽跨比、梁高比、墩高、施工阶段等因素对变截面箱梁剪力滞效应的影响进行了分析了.结果表明,自重荷载作用下,弯桥半径对剪力滞系数影响较大,沿纵桥向变化非常明显,但任一截面中心点的变化不大;边跨支座断面的截面应力分布最不均匀;跨径不变,随着曲率半径的减小,剪力滞系数越大,应力的不均匀分布也加剧变化;梁高比越大,剪力滞系数越大;墩越矮剪力滞系数越小,高墩时,墩高的变化不会影响剪力滞系数的分布.在悬臂施工阶段中,悬臂端截面的应力剪滞系数随着施工悬臂长度的增加而减小.  相似文献   

10.
为了分析波形钢腹板箱梁在剪力滞效应计算时由于未考虑中性轴的偏移而引起的附加轴力的影响,利用受弯梁的截面不受轴力的静力平衡条件,推导出波形钢腹板箱梁在余弦剪滞翘曲位移函数下的附加轴力计算公式。引入附加轴力影响系数来衡量附加轴力的相对大小,分别针对简支梁、悬臂梁和连续梁在集中荷载和均布荷载作用下的附加轴力影响系数进行数值分析。结果表明:在两种荷载工况下,附加轴力影响系数相对较小,基本都在2%之内,对剪力滞效应的影响可忽略不计。  相似文献   

11.
基于某13跨波形钢腹板连续梁桥,采用实际监测法和有限元数值模拟法,研究了波形钢腹板组合箱梁桥悬臂浇筑施工过程中温度效应和应力状态两个关键力学问题。研究结果表明,波形钢腹板组合箱梁桥悬臂施工过程中,大气温度变化可以引起梁体产生不可忽略的位移。施工过程中混凝土顶、底板由于剪力滞效应影响,纵向正应力呈现不均匀分布,而腹板剪应力分布均匀,且基本不受预应力施加的影响。  相似文献   

12.
波形钢腹板组合箱梁剪力滞效应的理论与试验研究   总被引:2,自引:0,他引:2  
基于能量变分法原理推导了波形钢腹板组合箱梁在集中荷载和均布荷载作用下的剪力滞效应计算公式,讨论了波高区混凝土的合理计算宽度取值问题;制作了2根模型梁、并进行了在集中荷栽和均布荷载作用下的加载试验,通过实测箱梁翼板的纵向应力分布来研究这种组合结构在外荷载作用下的剪力滞效应的变化规律;在此基础上利用空间有限元分析程序进行了数值分析.结果表明:剪力滞系数的理论值、模型实测值以及空间有限元计算值吻合良好,波高区混凝土按1倍波高进行取值计算时结果偏于安全;集中荷载相对于均布荷载而言,其剪力滞系数较大;结果证明了本文公式可用于波形钢腹板组合箱梁的剪力滞效应计算.  相似文献   

13.
简支波形钢腹板-混凝土组合箱梁扭转效应显著,文中根据组合箱梁受力特性,结合传统混凝土箱梁扭转分析理论,研究组合箱梁在集中偏心荷载作用下的扭转效应。结合相关文献的实验值,对偏心荷载下截面扭转翘曲正应力和扭转翘曲剪应力值进行修正,并通过ANSYS软件计算值进行对比分析。结果表明,在波形钢腹板-混凝土组合箱梁跨中作用偏心集中荷载时,扭转双力矩和弯扭力矩在跨中具有最大值,扭转翘曲应力在跨中截面处腹板底板交点处有最大值;跨中截面翼缘板自由端部翘曲剪应力为0 Pa;考虑扭转效应时跨中截面扭转剪应力均为弯曲剪应力的49%;理论计算值与ANSYS软件计算值误差小于10%,具有较好的计算精度。  相似文献   

14.
结合一座实际工程的大跨波形钢腹板组合连续梁桥,阐述其箱梁截面结构设计、混凝土与波形钢腹板之间的剪力连接件、以及布束体系等,之后采用Midas建立了主梁的空间杆系有限元模型,对其混凝土顶、底板应力及抗弯承载力进行了验算,并对波形钢腹板剪应力及剪力连接件剪切承载力单独进行了验算,结果表明:混凝土顶板和底板的抗裂性能满足要求;波形钢腹板强度足够,不会出现剪切破坏和屈曲失稳;剪力连接件设计合理、抗剪能力满足要求。可为类似大跨波形钢腹板PC箱梁提供参考。  相似文献   

15.
该文通过有限元分析及试验,对广西壮族自治区隆林至百色高速公路上一座40m跨径的双箱单室波形钢腹板预应力组合梁桥的偏载效应进行研究,得出如下结论:双箱单室波形钢腹板组合梁桥在偏心荷载作用下所产生的扭转及翘曲、畸变效应较为明显;剪应力放大系数对偏心荷载较为敏感,在设计中必须考虑荷载偏心所产生的附加剪应力;对于双箱单室波形钢腹板这种对剪力较为敏感的截面类型而言,现行的放大系数计算方法安全储备不高。  相似文献   

16.
大跨径波形钢腹板连续梁桥为了减少悬臂施工阶段及运营阶段墩顶箱梁承受的剪力及负弯矩,在设计时通常将跨中一定范围内的箱梁混凝土底板替换为钢底板来减小中跨结构重量,而边跨相对应节段采用满堂支架施工,这种非对称悬臂施工会使桥梁边跨及中跨混凝土应力分布出现较大差异。通过对某三跨波形钢腹板连续梁桥在非对称悬臂施工过程中混凝土应力分布特性及屈曲分析特征值进行分析并得出一些结论,为后续研究提供参考。  相似文献   

17.
采用修正偏心压力法研究波形钢腹板连续组合箱梁桥的荷载横向分布规律。结合工程实例,利用修正偏心压力法计算某单箱三室波形钢腹板连续组合箱梁桥的荷载横向分布系数,利用空间有限元分析程序进行了数值模拟,并对其偏心荷载工况下的挠度进行了实测。将修正偏心压力法、有限元模拟方法得到的挠度值与实测挠度值进行对比。结果表明,修正偏心压力法将空间问题转化为平面问题,且充分考虑了波形钢腹板组合箱梁的抗扭作用。得到的荷载横向分布系数与有限元计算结果吻合较好。采用该方法计算波形钢腹板连续组合箱梁桥荷载横向分布是可行且偏于安全的。  相似文献   

18.
该明确了宽跨比、宽高比均较大的低高度混凝土单箱多室连续梁桥在活载作用下的剪力滞效应分布特点,通过空间实体模型与平面杆系模型相结合的有限元法,对此类桥的空间应力响应进行了研究。研究表明:边跨和中跨跨中断面的剪力滞效应均较小,而中支点断面的剪力滞效应十分显著。研究给出此类桥型不同区段合理剪力滞系数的取值,成果可为今后类似工程的设计、施工及长期监测研究提供参考。  相似文献   

19.
为研究单箱五室波形钢腹板部分斜拉桥腹板的抗剪性能,以即将竣工验收的运宝黄河大桥为工程背景,利用Midas FEA软件建立该桥固结区域局部有限元模型,计算腹板的剪力分配与箱梁截面的剪力滞效应,考查混凝土内衬对波形钢腹板剪应力的影响。结果表明:同一截面中外侧钢腹板承担剪力的比重高于内侧,而混凝土腹板剪力分配比重明显高于钢腹板;随着远离墩梁固结区域,同一截面内混凝土腹板处的顶板正应力减小,钢腹板处的顶板正应力增大,底板的正应力均有所减小;混凝土内衬有效地降低了钢腹板剪应力,提高了钢腹板的抗屈曲性能。  相似文献   

20.
大悬臂钢-混凝土组合脊骨梁的剪力滞效应   总被引:2,自引:0,他引:2  
通过模型试验,首先研究了带波形钢腹板大悬臂挑梁的钢-混凝土组合脊骨梁正、负弯矩截面在集中荷载和均布荷载作用下的剪力滞效应,探讨了混凝土板和钢底板上弯曲正应力的横向分布规律;然后基于能量变分原理和换算模量法,提出了多弹性模量、多最大剪切转角差函数和考虑横向预应力影响的组合脊骨梁剪力滞效应的理论计算方法;最后分析了悬臂长度对组合截面剪力滞效应的影响.试验、理论和有限元分析结果的比较表明:组合脊骨梁的正、负弯矩截面均存在明显的剪力滞现象,所提出的理论计算方法能够满足工程设计的精度要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号