首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
馈能型悬架是可以回收悬架之间振动能量的新型悬架,研究国内外几种馈能型悬架方案的结构和工作原理,运用模糊综合评价法对馈能型悬架的结构方案进行评价.结果表明液电馈能型悬架方案具有明显的优势,是最可行的馈能型悬架结构方案.  相似文献   

2.
针对以直线电机作为执行器的馈能型半主动悬架控制方法复杂与效果差等问题, 结合变压充电控制原理与方法, 提出一种利用单相等效模型求解充电电压的方法, 设计了馈能型半主动悬架控制系统, 用于控制直线电机式馈能执行器; 建立了1/2车4自由度动力学模型和变压充电控制直线电机模型, 采用LQG控制策略求解理想馈能阻尼力; 将联接有整流桥的直线电机理论模型等效为单相电机模型, 计算了电机单相等效模型反电动势、电磁推力系数、电阻与电感参数; 采用充电电压求解控制器, 以悬架相对速度和理想馈能阻尼力作为输入求解实际充电电压, 进而实现执行器馈能控制; 以被动悬架和理想半主动悬架作为比较对象, 分析了馈能型半主动悬架性能与馈能效果。分析结果表明: 与被动悬架相比, 馈能型半主动悬架与理想半主动悬架的综合性能指标分别减小38.97%和45.42%, 前后悬架实际馈能阻尼力与理想馈能阻尼力的相关系数分别为0.967 4和0.976 8, 并且前后悬架振动能量的56.7%和62.1%被回收进蓄电池中, 因此, 采用基于单相等效模型与变压充电方法控制的馈能型半主动悬架能够回收大部分悬架振动能量和改善汽车的行驶平顺性。   相似文献   

3.
为改善齿轮齿条式馈能悬架的阻尼特性和馈能特性,在普通齿轮齿条式馈能悬架的基础上,采用钕铁硼永磁发电机、变速机构、换向机构和冲击保护装置,设计了高效馈能半主动悬架,并进行了仿真分析和试验研究.与普通齿轮齿条式馈能悬架相比,该高效馈能半主动悬架发电机转子的转动惯量减小71%,体积减小约40%,节省励磁功率20~30 W,死区由-0.22~0.22 m/s减小到-0.04~0.04 m/s,阻尼特性和馈能特性得到改善,能量转换效率由20%左右提高到50%以上;与被动悬架相比,该高效馈能半主动悬架使汽车的轮胎动载荷、簧载质量的垂直加速度和悬架动挠度的最大值均下降20%以上.   相似文献   

4.
针对主动悬架减振性能和馈能特性在不同等级路面适应性较差的问题,建立了非线性电磁主动悬架模型; 考虑车辆在行驶过程中悬架簧上质量存在不确定性,提出了一种主动悬架自适应滑模控制器; 基于不同路面下悬架动力学响应数据,采用自适应模糊神经网络算法识别路面等级,确定控制器目标系数,实现了主动悬架安全性和舒适性之间的协调; 研究了电磁主动悬架馈能特性及其切换控制策略,在此基础上,考虑电磁主动悬架安全性、舒适性和节能性的矛盾关系,采用多目标粒子群优化(MOPSO),以悬架动力学性能和馈能特性为设计目标综合优化控制器和悬架结构参数,并通过模糊集理论对多目标优化后的Pareto解集进行最优解选取。研究结果表明:模糊神经网络对不同等级路面下非线性电磁主动悬架的最大识别误差能够控制在10%以内,满足识别准确性要求; 在C级路面条件下,优化后的主动悬架与传统被动悬架相比,簧上质量振动加速度减小了35.3%,轮胎动行程增大了7.7%,但可以控制在10%的安全范围内; 与原主动悬架相比,优化后悬架簧上质量振动加速度减小了10.5%,馈能效率增大了1.7%,优化后自适应滑模控制器能够更好地协调悬架馈能特性和减振特性; 建立的非线性电磁主动悬架模型可实现不同路面等级下悬架系统安全性、舒适性和节能性的综合最优。   相似文献   

5.
车辆悬架最佳阻尼匹配减振器设计   总被引:5,自引:0,他引:5  
为了使设计减振器对车辆具有最佳减振效果,利用悬架最佳阻尼比,对减振器最佳阻尼系数进行了研究,建立了减振器最佳速度特性数学模型,提出了减振器阀系参数设计优化方法,对设计减振器进行了特性试验和整车振动试验,并与原车载减振器性能进行了对比。计算结果表明:减振器特性试验值与最佳阻尼匹配要求值的最大偏差为9%,而且,在低频范围内,设计减振器的整车振动传递函数幅值明显低于原车载减振器的幅值,有效遏制了簧下质量在13Hz附近的共振,因此,减振器速度特性模型和阀系参数优化设计方法是正确的。  相似文献   

6.
汽车减振器阻尼系数与悬架系统阻尼比的匹配   总被引:3,自引:0,他引:3  
阐述了双轴汽车减振器阻尼系数与悬架系统阻尼比匹配设计的原则,论述了悬架减振器外特性的匹配设计要求和设计方法,并对某实际车型进行了减振器阻尼系数与悬架系统阻尼比匹配分析及改进设计。通过道路试验验证了改进设计的结果是可行的。  相似文献   

7.
采用前向仿真和后向仿真相结合的思想,建立了基于循环工况的1/4馈能式主动悬架仿真系统。通过模糊PID控制器来控制电机的四象限运行,并考虑了电机、电池所造成的功率损,完成悬架主动力的输出以及能量的回收。选取了美国城市循环工况UDDS进行馈能式主动悬架的平顺性与经济性的仿真分析。仿真结果表明:相比于传统被动悬架,基于模糊PID控制的馈能式主动悬架能较好地改善汽车行驶平顺性,其在UDDS工况下的车身垂直加速度均方根值改善了32.43%;相比于传统电磁式耗能主动悬架,馈能式主动悬架在该工况下的节能效果达到了24.88%。  相似文献   

8.
为提高车辆的乘坐舒适性并兼具回收振动能量的功能,对试制PMSM-滚珠丝杠式馈能作动器进行了力学特性测试,对库仑阻尼和作动器等效惯性质量进行识别,根据识别结果设计了馈能型主动悬架非线性控制器;结合电磁动力学建模、电气参数校核,采用分级变压充电试验方法对作动器样机进行三角波及正弦波位移输入下的力学特性测试,利用参数拟合使建模仿真力学特性曲线逼近实测曲线,完成库仑阻尼识别和等效惯性质量验证;对含有库仑阻尼及作动器等效惯性质量的主动悬架力学模型中的非线性项进行前馈反馈线性化处理,并对簧载质量/非簧载质量加速度项正则化处理,在此基础上根据作动器最大输出力设计了双约束H2/H控制器;利用数值仿真对被动悬架、理想主动悬架、常规H2/H控制主动悬架和双约束H2/H控制主动悬架进行悬架综合性能对比验证及馈能性能分析。分析结果表明:双约束H2/H控制主动悬架的簧载质量加速度均方根和综合性能指标较被动悬架分别降低47.05%和51.67%,仅比理想主动悬架分别差1.86%和1.34%,且比常规H2/H控制主动悬架分别优19.28%和11.21%;库仑阻尼和电机定子电阻分别消耗掉了作动器总吸收功率的18.99%和20.19%,相比之下,流向蓄电池的回收平均功率高达60.82%。   相似文献   

9.
基于AMESim软件建立1/4空气悬架系统模型,利用Matlab软件设计空气悬架系统控制器,使用Matlab和AMESim对空气悬架系统进行联合仿真。白噪声路面信号输入下的联合仿真结果分析表明,安装主动空气悬架系统车辆的最大振动加速度与振动加速度均方根、平均车身高度、动载荷均比安装被动空气悬架系统的车辆小,该仿真结果符合有关主动空气悬架系统的一般研究结论,该控制方法可以有效提高车辆的平顺性。  相似文献   

10.
分析了悬架减振器试验系统的功能,根据《汽车筒式减振器台架试验方法》要求对试验系统硬件进行了设计,利用虚拟仪器图形化编辑语言LabVIEW对减振器试验系统软件进行设计,实现了信号的数字滤波、拟合等处理及阻尼力信号、位移信号的频谱分析,通过该试验系统可以检测出减振器的示功特性曲线与速度特性曲线,从而判断减振器的质量。  相似文献   

11.
基于MATLAB的汽车悬架减振器检测台仿真分析   总被引:1,自引:0,他引:1  
在巳有研究的基础上给出了悬架减振器性能检测试验台的工作原理、结构和检测标准,建立悬架减振器检测时车一台振动系统的3自由度模型,应用MATLAB进行了系统的仿真和分析,为减振器性能检测台设计提供了依据。  相似文献   

12.
为研究车身垂向振动过程中减振器的能量消耗特性,推导初始位移状态下减振器在一个周期内消耗的能量(阻力功)的计算公式,得知仅在初始位移作用下,车身振动系统减振器消耗的能量只与阻尼比有关,与车身振动系统的固有频率无关。研究表明:对于单自由度振动系统,系统的阻尼比大于0.3时,减振器在一个周期内消耗的能量占初始位移状态输入系统功的98%,分别减小阻尼系数、增大质量、增大刚度,都会使减振器在一个周期内消耗的能量减少,振荡持续时间延长,有利于车身振动系统模态参数的测量。  相似文献   

13.
减振器是车辆悬架的主要阻尼元件,减振器的外特性由示功图p=f(s)和速度特性p=f(v)表示。正常示功图应当完整、圆滑、丰富、无畸变;复原阻尼力大于压缩阻尼力;最大阻尼力要符合设计目标,才能满足车辆行驶安全性和平顺性的要求,双筒液压减振器存在临界速度低和易产生气泡的缺点,导致发生外特性畸变,双筒充气液压减振器由于在贮油腔内有预充气,在工作过程中有一定的背压,从而能有效地消除外特性畸变,对所研制的双  相似文献   

14.
为进一步改善横向互联空气悬架车辆的行驶平顺性和操纵稳定性, 基于多智能体理论和合作博弈Shapley值原理构建多智能体减振器控制系统; 多智能体减振器控制系统由信息发布智能体、平顺性智能体、操稳性智能体和博弈协调智能体组成, 其中信息发布智能体从环境中获取车辆状态信息, 根据下层智能体的信息需求传递信息, 平顺性智能体接收悬架动行程及其变化率信息, 根据平顺性控制要求, 输出自身的阻尼系数意图, 操稳性智能体接收当前互联状态信息触发对应的推理模块, 根据车身侧倾角信息求解需求的阻尼系数, 其中推理模块是通过对遗传算法优化出的阻尼系数进行模糊神经网络自学习形成的, 博弈协调智能体接收平顺性智能体与操稳性智能体的阻尼意图, 根据自身的合作博弈规则, 对阻尼意图进行修正, 输出全局最优阻尼系数; 在不同互联状态、不同激励条件下进行空气悬架静、动态特性试验研究, 并将试验结果与仿真结果进行对比, 验证仿真模型的准确性; 在混合工况下, 利用整车仿真模型验证多智能体减振器控制系统的可行性和有效性。研究结果表明: 和传统减振器阻尼控制系统相比, 多智能体减振器控制系统能有效地使簧载质量加速度均方根值降低14.95%, 悬架动行程均方根值降低10.64%, 车身侧倾角均方根值降低12.33%。提出的多智能体减振器控制系统改善了车辆行驶平顺性和乘坐舒适性, 并且能够抑制车身的侧倾, 提高整车的操纵稳定性。   相似文献   

15.
针对已有在悬架系统中研究油压减振器动力学模型的局限性,提出了一种分析减振器系统动力学问题的新方法.以KONI减振器为例,建立了KONI减振器系统动力学的模型,并对其进行了仿真研究.仿真结果表明,经过一段时间后,系统振动幅值逐渐衰减并趋于稳态,与输入激励在频率上一致.本文的结果可作为减振器改进和设计的理论依据,对于分析车辆运行平顺性具有指导意义,对于进一步分析和设计减振器提供参考依据.  相似文献   

16.
车辆能量回馈式主动悬架μ综合控制   总被引:1,自引:0,他引:1  
为了改善车辆能量回馈式主动悬架系统的稳定性、减振性及能量回馈性能, 建立了含参数摄动的1/4车体能量回馈式主动悬架模型并进行动力学分析, 基于μ综合方法设计了该系统的鲁棒控制器. 为验证其控制效果, 利用MATLAB/SIMULINK进行了仿真. 结果表明, 在参数摄动和路面不平顺输入的干扰下, 基于μ综合控制的车辆能量回馈式主动悬架鲁棒稳定, 闭环系统的结构奇异值峰值为0.580 9, 在给定频段内能更好地抑制车体振动,在固有频率下车体垂直振动加速度增益降低了9 dB.   相似文献   

17.
运用ADAMS/CAR建立重型汽车空气悬架模型和整车多体动力学模型,并对该车驾驶员处和鞍座处进行平顺性仿真分析.以驾驶员处和鞍座处加权加速度均方根为目标函数,以空气悬架弹簧刚度和减振器阻尼为试验因子,利用多目标优化软件ISIGHT进行多目标分析,获取最优参数.仿真分析结果表明,采用优化后的悬架参数可使驾驶员处以及鞍座处的舒适程度得到提高.  相似文献   

18.
建立了基于空气悬架的1/2车辆加速/制动系统模型,通过轴距预瞄在后轮处提前预测路面不平度;设计了基于轴距预瞄控制算法的加速/制动最优控制器;进行了白噪声仿真分析。仿真结果表明:与被动空气悬架加速/制动系统相比,基于轴距预瞄控制的主动空气悬架加速/制动系统能有效降低车辆振动。与最优控制空气悬架加速/制动系统相比,质心加速度和后轮对应处的车身加速度、悬架动行程、轮胎动载均有显著减小,较好的改善了车辆在加速/制动时的平顺性和操纵稳定性。  相似文献   

19.
为了研究后轴空气悬架对货车平顺性的影响,利用ADAMS软件,基于匹配原则分别建立了后轴平衡悬架与后轴空气悬架的货车多体动力学仿真模型.开展了整车在随机路面上的平顺性仿真,对比分析了2种悬架对平顺性的影响,同时研究了车速和货物质量对后轴空气悬架货车平顺性的影响.结果表明,后轴安装空气悬架能够明显改善车辆的平顺性,减小货物的振动;同时,降低车速,减小货物质量都将有利于改善车辆的平顺性.  相似文献   

20.
为研究高速列车动车转向架气动噪声特性,建立了动车转向架空气动力学模型,采用定常RNGk-湍流模型与宽频带噪声源模型对其气动噪声声源进行初步探讨,并结合非定常LES大涡模拟与Lighthill声学比拟理论进行了远场气动噪声分析。研究结果表明:动车转向架气动噪声源为轮对、构架、牵引电机1、枕梁、垂向减振器、抗侧滚扭杆等结构的迎风侧凸起部位,且构架对动车转向架远场气动噪声的贡献最大,其次为轮对和抗侧滚扭杆,然后为垂向减振器和枕梁,牵引电机1、牵引电机2、空气弹簧和横向减振器对远场气动噪声的贡献较小。动车转向架远场气动噪声是宽频噪声,具有衰减特性、幅值特性和气动噪声指向性。在低频部分能量较大,中心频率为25、50Hz,且分布规律不随运行速度的改变而变化。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号