首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
To further improve the utilization rate of railway tracks and reduce train delays, this paper focuses on developing a high-efficiency train routing and timetabling approach for double-track railway corridors in condition that trains are allowable to travel on reverse direction tracks. We first design an improved switchable policy which is rooted in the approaches by Mu and Dessouky (2013), with the analysis of possible delays caused by different path choices. Then, three novel integrated train routing and timetabling approaches are proposed on the basis of a discrete event model and different dispatching rules, including no switchable policy (No-SP), Mu and Dessouky (2013)’s switchable policy (Original-SP) and improved switchable policy (Improved-SP). To demonstrate the performance of the proposed approaches, the heterogeneous trains on Beijing–Shanghai high speed railway are scheduled by aforementioned approaches. The case studies indicate that in comparison to No-SP and Original-SP approaches, respectively, the Improved-SP approach can reduce the total delay of trains up to 44.44% and 73.53% within a short computational time. Moreover, all of the performance criteria of the Improved-SP approach are usually better than those of other two approaches.  相似文献   

2.
This paper makes two contributions. It firstly proposes the use of a fault tolerance approach for railway operations and secondly it develops a minimum time gap matrix model for capacity computation and the study of perturbation effects through the generation of a compressed timetable. A fault tolerance approach is proposed to improve the operational efficiency of the railway network in terms of the network capacity and the robustness of train timetables. The term fault tolerance is used in a broad sense, to represent any abnormalities or unexpected events in operations or equipment. Enhanced fault tolerance capability provides safety assurance so that, in normal operating conditions, trains can adopt much faster speed profiles when approaching a ‘to-be-cleared’ signal block at stations and junctions than those currently permitted, effectively turning the status of ‘be ready to stop’ to that of ‘proceed with caution’. In the rare event of a ‘fault’ in the system, e.g. if a conflicting train fails to move out of a signalling block as expected or a switch fails to operate as required, the train would be re-routed to take an alternative path. In this study, the new approach is developed on three scenarios i.e., a standard classic right turn junction, a terminus station, and a small network combining both of these elements to demonstrate the performance gains, but the concept can be readily extended for other types of junctions/stations. Results so far show great potential in the proposed fault tolerance approach to increase the capacity and enhance operational robustness to perturbations at such locations. A novel method for capacity computation called minimum time gap matrix model is also introduced that has capability to produce compressed timetables directly from a given train sequence.  相似文献   

3.
Based on train scheduling, this paper puts forward a multi-objective optimization model for train routing on high-speed railway network, which can offer an important reference for train plan to provide a better service. The model does not only consider the average travel time of trains, but also take the energy consumption and the user satisfaction into account. Based on this model, an improved GA is designed to solve the train routing problem. The simulation results demonstrate that the accurate algorithm is suitable for a small-scale network, while the improved genetic algorithm based on train control (GATC) applies to a large-scale network. Finally, a sensitivity analysis of the parameters is performed to obtain the ideal parameters; a perturbation analysis shows that the proposed method can quickly handle the train disturbance.  相似文献   

4.
This paper investigates the coordinated cruise control strategy for multiple high-speed trains’ movement. The motion of an ordered set of high-speed trains running on a railway line is modeled by a multi-agent system, in which each train communicates with its neighboring trains to adjust its speed. By using the potential fields and LaSalles invariance principle, we design a new coordinated cruise control strategy for each train based on the neighboring trains’ information, under which each train can track the desired speed, and the headway distances between any two neighboring trains are stabilized in a safety range. Numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

5.
We address the problem of simultaneously scheduling trains and planning preventive maintenance time slots (PMTSs) on a general railway network. Based on network cumulative flow variables, a novel integrated mixed-integer linear programming (MILP) model is proposed to simultaneously optimize train routes, orders and passing times at each station, as well as work-time of preventive maintenance tasks (PMTSs). In order to provide an easy decomposition mechanism, the limited capacity of complex tracks is modelled as side constraints and a PMTS is modelled as a virtual train. A Lagrangian relaxation solution framework is proposed, in which the difficult track capacity constraints are relaxed, to decompose the original complex integrated train scheduling and PMTSs planning problem into a sequence of single train-based sub-problems. For each sub-problem, a standard label correcting algorithm is employed for finding the time-dependent least cost path on a time-space network. The resulting dual solutions can be transformed to feasible solutions through priority rules. Numerical experiments are conducted on a small artificial network and a real-world network adapted from a Chinese railway network, to evaluate the effectiveness and computational efficiency of the integrated optimization model and the proposed Lagrangian relaxation solution framework. The benefits of simultaneously scheduling trains and planning PMTSs are demonstrated, compared with a commonly-used sequential scheduling method.  相似文献   

6.
目前我国高速铁路的日间行车能力已得到了较为充分的利用,而如何组织好高铁夜间垂直天窗与夜行列车之间的耦合关系、用好高铁夜间能力,是适应多样化市场需求的需要,也是进一步提升高铁经营效益的有效途径。对此,本文提出了动卧列车和货运动车组两种相对可行的高铁夜间运输产品,分别对其产品特征进行了分析,充分考虑高铁夜间天窗制约下两种列车的开行模式,基于市场需求提出了列车开行策略,并在充分对比两种产品的经济效益、客(货)源组织、能力分配等因素的基础上,给出了高铁夜间能力发展建议。  相似文献   

7.
Evaluation of green wave policy in real-time railway traffic management   总被引:1,自引:0,他引:1  
In order to face the expected growth of transport demand in the next years, several new traffic control policies have been proposed and analyzed both to generate timetables and to effectively manage the traffic in real-time. In this paper, a detailed optimization model is used to analyze one such policy, called green wave, which consists in letting trains wait at the stations to avoid speed profile modifications in open corridors. Such policy is expected to be especially effective when the corridors are the bottleneck of the network. However, there is a lack of quantitative studies on the real-time effects of using this policy. To this end, this work shows a comparison of the delays obtained when trains are allowed or not to change their speed profile in open corridors. An extensive computational study is described for two practical dispatching areas of the Dutch railway network.  相似文献   

8.
The train trajectory optimization problem aims at finding the optimal speed profiles and control regimes for a safe, punctual, comfortable, and energy-efficient train operation. This paper studies the train trajectory optimization problem with consideration of general operational constraints as well as signalling constraints. Operational constraints refer to time and speed restrictions from the actual timetable, while signalling constraints refer to the influences of signal aspects and automatic train protection on train operation. A railway timetable provides each train with a train path envelope, which consists of a set of positions on the route with a specified target time and speed point or window. The train trajectory optimization problem is formulated as a multiple-phase optimal control model and solved by a pseudospectral method. This model is able to capture varying gradients and speed limits, as well as time and speed constraints from the train path envelope. Train trajectory calculation methods under delay and no-delay situations are discussed. When the train follows the planned timetable, the train trajectory calculation aims at minimizing energy consumption, whereas in the case of delays the train trajectory is re-calculated to track the possibly adjusted timetable with the aim of minimizing delays as well as energy consumption. Moreover, the train operation could be affected by yellow or red signals, which is taken into account in the train speed regulation. For this purpose, two optimization policies are developed with either limited or full information of the train ahead. A local signal response policy ensures that the train makes correct and quick responses to different signalling aspects, while a global green wave policy aims at avoiding yellow signals and thus proceed with all green signals. The method is applied in a case study of two successive trains running on a corridor with various delays showing the benefit of accurate predictive information of the leading train on energy consumption and train delay of the following train.  相似文献   

9.
This article discusses approaches to the determination of railway capacity and the significance of the following factors on capacity: mix of trains, length and weight of trains, direction of train travel, acceleration and deceleration, stopping protocols of trains, location and length of crossing loops, location of signals, length of sections, dwell times and sectional running times. A more accurate method to calculate railway capacity is developed using previously unaddressed aspects for capacity determination. Capacity and pricing are two key issues for organizations involved with open track access regimes. A train access charging methodology is therefore developed and incorporated into a railway capacity determination model.  相似文献   

10.
An emerging task in catering services for high-speed railways (CSHR) is to design a distribution system for the delivery of high-quality perishable food products to trains in need. This paper proposes a novel model for integrating location decision making with daily rail catering operations, which are affected by various aspects of rail planning, to meet time-sensitive passenger demands. A three-echelon location routing problem with time windows and time budget constraints (3E-LRPTWTBC) is thus proposed toward formulating this integrated distribution system design problem. This model attempts to determine the capacities/locations of distribution centers and to optimize the number of meals delivered to stations. The model also attempts to generate a schedule for refrigerated cars traveling from distribution centers to rail stations for train loading whereby meals can be catered to trains within tight time windows and sold before a specified time deadline. By relaxing the time-window constraints, a relaxation model that can be solved using an off-the-shelf mixed integer programming (MIP) solver is obtained to provide a lower bound on the 3E-LRPTWTBC. A hybrid cross entropy algorithm (HCEA) is proposed to solve the 3E-LRPTWTBC. A small-scale case study is implemented, which reveals a 9.3% gap between the solution obtained using the HCEA and that obtained using the relaxation model (RM). A comparative analysis of the HCEA and an exhaustive enumeration algorithm indicates that the HCEA shows good performance in terms of computation time. Finally, a case study considering 156 trains on the Beijing-Shanghai high-speed corridor and a large-scale case study considering 1130 trains on the Chinese railway network are addressed in a comprehensive study to demonstrate the applicability of the proposed models and algorithm.  相似文献   

11.
In this paper, we propose an improved traffic model for simulating train movement in railway traffic. The proposed model is based on optimal velocity car‐following model. In order to test the proposed model, we use it to simulate the train movement with fixed‐block system. In simulations, we analyze and discuss the space–time diagram of railway traffic flow and the trajectories of train movement. Simulation results demonstrate that the proposed model can be successfully used for simulating the train movement in railway traffic. From the space–time diagram, we find some complex phenomena of train flow, which are observed in real railway traffic, such as train delays. By analyzing the trajectories of train movement, some dynamic characteristics of trains can be reproduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an attempt made to facilitate re‐scheduling of trains to minimize operational delays and accommodate uniform headways for off peak sub urban services subject to resource constraints such as locomotive availability, poor track conditions and stations without siding facilities. The paper describes the computer simulation model designed to optimize train schedules on single‐track rail lines. Using this simulation program it is possible to plan and optimize timetables for railway networks with train runs within short time periods for both single track and double track conditions. The paper describes the capabilities of presenting the results of the simulation runs. These include the time‐distance graph, the network with train movements, dialog boxes with information about selected trains. The programme is capable of changing the starting point, departure time, train destinations and adding or deleting a stop etc. from the user interface. Four objects of array variables are used in the simulation process to keep train and station data. Two object arrays are used for the train movements in up and down directions. The stations' data are stored in the other two object arrays. One of these arrays of stations contains all the stations of the line while the other one contains only the stations with siding facilities. A case study that covers a 61 km long single‐track line with 14 stations is presented to highlight the model capabilities.  相似文献   

13.
Although people are often encouraged to use public transportation, the riding experience is not always comfortable. This study uses service items to measure passenger anxieties by applying a conceptual model based on the railway passenger service chain perspective. Passenger anxieties associated with train travel are measured using a modern psychometric method, the Rasch model. This study surveys 412 train passengers. Analytical results indicate that the following service items cause passenger anxiety during trains travel: crowding, delays, accessibility to a railway station, searching for the right train on a platform, and transferring trains. Empirical results obtained using the Rasch approach can be used to derive an effective strategy to reduce train passenger anxiety. This empirical study also demonstrates that anxiety differs based on passenger sex, age, riding frequency, and trip type. This information will also prove useful for transportation planners and policy-makers when considering the special travel needs of certain groups to create a user-friendly railway travel environment that promotes public use.  相似文献   

14.
This paper proposes a mathematical model for the train routing and timetabling problem that allows a train to occasionally switch to the opposite track when it is not occupied, which we define it as switchable scheduling rule. The layouts of stations are taken into account in the proposed mathematical model to avoid head-on and rear-end collisions in stations. In this paper, train timetable could be scheduled by three different scheduling rules, i.e., no switchable scheduling rule (No-SSR) which allows trains switching track neither at stations and segments, incomplete switchable scheduling rule (In-SSR) which allows trains switching track at stations but not at segments, and complete switchable scheduling rule (Co-SSR) which allows trains switching track both at stations and segments. Numerical experiments are carried out on a small-scale railway corridor and a large-scale railway corridor based on Beijing–Shanghai high-speed railway (HSR) corridor respectively. The results of case studies indicate that Co-SSR outperforms the other two scheduling rules. It is also found that the proposed model can improve train operational efficiency.  相似文献   

15.
In this paper, we develop a new framework for strategic planning purposes to calculate railway infrastructure occupation and capacity consumption in networks, independent of a timetable. Furthermore, a model implementing the framework is presented. In this model different train sequences are generated and assessed to obtain timetable independence. A stochastic simulation of delays is used to obtain the capacity consumption. The model is tested on a case network where four different infrastructure scenarios are considered. Both infrastructure occupation and capacity consumption results are obtained efficiently with little input. The case illustrates the model’s ability to quantify the capacity gain from infrastructure scenario to infrastructure scenario which can be used to increase the number of trains or improve the robustness of the system.  相似文献   

16.
This paper examines some key aspects of a charging system for promoting railway transport, including charges reflecting a clear relationship with costs (transparency) and charges reflecting the quality of the infrastructure manager's service. Train running charges recover track-related costs and can help to develop a charging system that meets these requirements. To orient train running charges to the market, a method for processing track maintenance and renewal costs is proposed whereby the quality of the service provided by an infrastructure is measured according to its utility to the railway undertaking. To achieve transparency, a single indicator is used for cost planning and the subsequent levying of costs on railway undertakings. The paper includes an example of how proposed train running charges would be calculated according to data from 14 European countries. The example shows that short-distance trains generate the lowest maintenance and renewal costs, followed by long-distance trains and freight trains.  相似文献   

17.
The aim of this paper is to analyze and to improve the current planning process of the passenger railway service in light of the recent railway market changes. In order to do so, we introduce the Passenger Centric Train Timetabling Problem. The originality of our approach is that we account for the passenger satisfaction in the design of the timetable. We consider both types of timetable(s): cyclic and non-cyclic. The problem is modeled as a Mixed Integer Linear Programming (MILP) problem with an objective of maximizing the train operating company’s profit while maintaining ε level of passenger satisfaction. The model does not take into account conflicts between trains and does not adjust dwell times at stopping stations among the lines. By solving the model for various values of ε, the approximated Pareto frontier is constructed. The analysis, based on an experiment using realistic data, shows that an improvement of passenger satisfaction while maintaining a low profit loss for the railway company can be achieved. A sensitivity analysis on passenger congestion illustrates a quantitative evidence that the non-cyclic timetables can account better for high density demand in comparison to cyclic timetables.  相似文献   

18.
Liquefied natural gas (LNG) has emerged as a possible alternative fuel for freight railroads in the United States, due to the availability of cheap domestic natural gas and continued pursuit of environmental and energy sustainability. A safety concern regarding the deployment of LNG-powered trains is the risk of breaching the LNG tender car (a special type of hazardous materials car that stores fuel for adjacent locomotives) in a train accident. When a train is derailed, an LNG tender car might be derailed or damaged, causing a release and possible fire. This paper describes the first study that focuses on modeling the probability of an LNG tender car release incident due to a freight train derailment on a mainline. The model accounts for a number of factors such as FRA track class, method of operation, annual traffic density level, train length, the point of derailment, accident speed, the position(s) of the LNG tender(s) in a train, and LNG tender car design. The model can be applied to any specified route or network with LNG-fueled trains. The implementation of the model can be undertaken by the railroad industry to develop proactive risk management solutions when using LNG as an alternative railroad fuel.  相似文献   

19.
This paper analyses the interactions between vehicles, infrastructure and environment for rail traffic. It identifies variables having a significant influence on sound levels, defines a standard procedure for measuring noise, and develops a database for setting up and calibrating train noise models. A pilot study looks at two railway lines passing through Vercelli, a medium sized town in the north-west of Italy. Four main conclusions were drawn. First, in certain conditions, variables that normally influence noise production can be neglected (e.g. when surrounding environmental conditions are constant, different types of train do not cause a significant variation in noise level). Secondly, when diesel trains are travelling at less than 70 km/h, a speed change of 30–40 km/h significantly affects the maximum noise level (Lmax). However, for electrified lines, when speed is below 80 km/h, a change of 20–30 km/h does not cause significant variations in Lmax. Thirdly, for diesel trains transiting at low speeds––e.g. near stations––noise emissions are strongly affected by acceleration/deceleration. Lastly, an approach based on ‘sites types’ is able to produce useful results because site configuration and the presence of building significantly affect Lmax. High buildings along the line can increase noise levels and may nullify the advantages derived from technological advance in the vehicles.  相似文献   

20.
The most natural and popular dispatching rule for double-track segments is to dedicate one track for trains traveling in one direction. However, sometimes passenger trains have to share some portions of the railway with freight trains and passenger trains are traveling faster and faster nowadays. The major drawback of this dedicated rule is that a fast train can be caught behind a slow train and experience significant knock-on delay. In this paper, we propose a switchable dispatching policy for a double-track segment. The new dispatching rule enables the fast train to pass the slow train by using the track traveled by trains in the opposite direction if the track is empty. We use queueing theory techniques to derive the delay functions of this policy. The numerical experiments show that a switchable policy can reduce the fast train knock-on delay by as high as 30% compared to a dedicated policy. When there are crossovers at the middle of the double-track segment, our proposed switchable policy can reduce the delay of the fast trains by as high as 65%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号