首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以俄罗斯南萨哈林岛路易斯桥为研究对象,对处于温差大地区服役多年的小跨径钢混结合桥进行了荷载试验和有限元模拟,结果表明在沥青混凝土铺装层厚度较大时,沥青混凝土铺装层的温度由季节温度的变化而改变,从而影响主梁的力学性能。研究发现-5℃时试验荷载作用的实测数据与有限元模拟值误差很小;在相同荷载作用下,沥青混凝土铺装层温度由-24℃升高到+23℃时,主梁竖向位移增大了48.6%,上翼缘压应力增大了275%,下翼缘拉应力增大了25.4%。根据试验可以判断,在夏季温度最高时,桥梁承载能力最低,其研究方法和结果具有一定的参考价值。  相似文献   

2.
日照作用下混凝土单箱双室磁浮轨道梁的温度场分布不均匀,易引起变形、开裂,影响轨道平顺性及行车安全性。基于传热学原理,结合上海夏季辐射和气温等气象资料,针对日照作用下混凝土双室箱梁的温度场分布展开有限元模拟分析,研究了不同时刻时轨道梁截面的温度分布规律,得到了箱梁在不同时刻的温度云图;提取最大竖向温差时刻腹板和最大横向温差时刻底板中线的温度值,拟合后得到横向与竖向的温度梯度曲线,与规范温度梯度对比后发现:竖向温度梯度峰值比规范值大,变化更加剧烈,且在底板附近存在反向温差,横向温度梯度峰值比规范值小,变化也更加剧烈且同样存在反向温差,双室箱梁的温度梯度模式与规范不一致。  相似文献   

3.
为深入系统研究高速铁路桥上CRTSⅡ型纵连板式无砟轨道温度场分布规律,制作无砟轨道后张法预应力混凝土简支箱梁1/4缩尺试验模型,通过开展快速升降温试验,分析CRTSⅡ型无砟轨道二维温度场分布规律,提出轨道系统横、竖向温度三维分布形式。研究结果表明:高速铁路桥上CRTSⅡ型无砟轨道竖向温度及温差分布呈三段式阶梯形;横向温度分布呈抛物线形;CA砂浆层是影响轨道系统横、竖向温度场分布的最主要因素;轨道系统竖向负温差主要产生于轨道板;轨道板与CA砂浆层间竖向温度梯度最为显著,最高达4.5℃/cm;横向最大负温差为-4.4℃,最大正温差为5.5℃,分别产生于底座板上部和中部;轨道系统横、竖向温度三维分布呈三段式阶梯形曲面。研究结果可为高速铁路桥上CRTSⅡ型无砟轨道温度效应设计和研究提供参考。  相似文献   

4.
研究目的:为得到设有超高的无砟轨道温度场分布的时变规律,建立无砟轨道横竖向温度梯度荷载模式,在某客运专线圆曲线段上CRTSⅡ型纵连板式无砟轨道中埋设温度传感器对其温度场进行了长期连续观测。研究结论:(1)无砟轨道昼夜温度变化较大,表面最高日温差可达24.7℃,平均日温差达19.0℃;(2)随着距表面深度的增加,无砟轨道温度变化幅值逐渐减小,峰值出现时间不断滞后;(3)底座板底面最大日温差为6.1℃,平均为5.0℃;(4)纵连板式无砟轨道的竖向温度梯度可拟合为指数曲线,与铁路桥梁设计规范规定的箱梁竖向温度梯度分布在形状上较为符合;(5)纵连板式无砟轨道横向温度梯度分为轨道板和底座板两类,轨道板横向温度梯度可采用二次函数拟合回归,底座板横向梯度可采用线性分段函数拟合;(6)研究成果可为我国中部地区高速铁路设计温度荷载模式提供指导作用。  相似文献   

5.
方明镜  陈豪 《铁道建筑》2020,(3):112-117
沥青混凝土铺装轨道结构中,沥青混凝土支承层的厚度设计目前以经验为主。本文建立了轨道板在均布荷载作用下的层状弹性体系理论模型,应用有限元分析和实测数据验证了理论模型的有效性,提出以沥青混凝土层层底拉应变、路基面竖向应力、路基面竖向位移为关键设计指标的沥青混凝土支承层厚度准静态设计方法,并进行了实例设计。结果表明:理论分析结果相比有限元计算结果偏于保守,两者都在实测数据取值范围内;理论模型修正后可用于无砟轨道沥青混凝土支承层的厚度设计;设计指标的阈值可控制设计层的最小适宜厚度。  相似文献   

6.
预应力混凝土箱型轨道梁桥的温度效应不容忽视,在一定程度上甚至会超过活载作用成为设计的控制因素.论述了预应力混凝土箱型轨道梁桥温度场及其变化规律,分析了环境温度场与结构温度场的关系.运用傅里叶热传导理论和边界条件,建立了预应力混凝土箱型轨道梁结构温度场计算的数值模型.计算结果在某轨道线试验梁中得到了验证.在此基础上,将预应力混凝土箱型轨道梁温度影响的计算简化为温差作用下控制温度荷载的计算问题,提出了简化温度分布模式,对工程设计中合理控制温度效应具有实际参考价值.  相似文献   

7.
根据铁路混凝土槽形梁浇筑时水化热温度的现场测试结果,绘制了温度变化的时程曲线,得到预应力混凝土浇筑后梁体不同部位在水化热影响下的温度峰值及温差变化规律。分析结果表明:槽形梁混凝土水化热的最高温度达到了72.5℃,最高温度出现在腹板的中下部;腹板各测点的最高温度均大于底板各测点的最高温度,且达到最高温度所用的时间也有所差异;腹板部位的竖向温差均在20℃以上,而底板竖向温差为9℃;腹板表面测点和底板各测点在混凝土浇筑完毕80 h后降至环境温度。根据水化热温度的变化规律,从材料配比、混凝土浇筑工艺、施工养护、施工阶段4方面提出了控制混凝土水化热的措施。  相似文献   

8.
将桥上CRTSⅡ型板式无砟轨道结构视为多层层状体系,基于传热学基本原理,考虑模型边界条件,建立轨道结构温度场分析模型,以日照时长、日辐射总量、日平均气温和日温差为自变量,回归分析提出轨道结构竖向温度分布预估模型,研究桥上CRTSⅡ型板式无砟轨道结构的竖向温度场分布。研究结果表明:利用理论模型计算得到的轨道结构温度场分布与实测结果对比具有较好一致性;将各环境因素视为独立变量,轨道结构表面温度最值、轨道板温差随日照时长、日辐射总量、日平均气温、日温差成线性变化,轨道结构内部温度在当表面温度取最值时随深度成3次曲线线形变化;根据预估模型所得的轨道板表面温度最值、轨道板温差、轨道结构竖向温度预估值与实测值、理论值误差小于2%;利用温度场预估模型可根据气象数据快速计算得到轨道结构竖向温度分布,可为精确计算轨道结构温度效应提供参考。  相似文献   

9.
根据大准铁路32 m预应力混凝土梁桥的实测横向振动数据,综合分析了32 m预应力混凝土梁桥的横向动力性能。结果表明:32 m预应力混凝土梁桥的横向振动在很大程度上是由于桥墩的振动引起的,而桥墩横向振动与货列的激励频率、桥墩的自振特性有关,当墩高大于20 m时,由于其有载自振频率低,在货列重车速度较低下就可能导致横向共振现象。  相似文献   

10.
城市中小跨径钢桥逐渐采用沥青混凝土摊铺,沥青混凝土高温摊铺会对桥梁结构产生影响,需建立沥青混凝土高温摊铺时的温度荷载计算公式对不同类型桥梁进行分析。采用ANSYS建立钢箱梁节段瞬态热传导模型,分析浇筑式沥青混凝土摊铺过程中双箱单室钢箱梁温度场的分布特征。根据仿真结果建立了温度荷载计算公式,并利用热-结构耦合分析模型与梁单元模型讨论温度荷载公式在梁单元模型中的适用性。研究结果表明:采用温度荷载计算公式计算支座纵向位移时误差较小,计算支座竖弯转角时误差较大,计算支座竖向反力及梁体竖向位移时误差在10%以内。  相似文献   

11.
以城市轻轨槽型梁为研究对象,采用精细化有限元方法研究温度效应及裂缝成因对槽型梁力学性能的影响,结果表明:竖向温度梯度对槽型梁竖向位移、纵向应力、横向应力均有较大影响,设计中不能忽略;系统温差只引起槽型梁变形,不引起应力,横向位移和纵向位移都是随着系统温差的增大而线性增加;普通钢筋可以抑制裂缝的发展,进行非线性分析时,除考虑材料非线性,还必须建立含普通钢筋的精细化模型,在预应力张拉后,锚固端裂缝分布最多,施工时可以在1/8跨径范围内采取补强措施来避免预应力张拉产生的裂缝。  相似文献   

12.
为研究大跨度小半径曲线连续梁桥的地震响应,以现代有轨电车线路上一座(33.5+60.0+36.5)m三跨预应力混凝土曲线连续梁桥为例进行分析。采用MIDAS/Civil建立全桥有限元模型,计算不同约束条件下桥梁动力特性,并采用反应谱法对桥梁在地震作用下的位移和内力进行分析。分析结果表明:采用刚构-连续组合的曲线梁桥可以获得较好的内力响应及位移响应,有利于桥梁的抗震;对于大跨度、小曲线梁桥,位移响应最大时和内力响应最大时分别对应不同的激励角度,在考虑水平地震作用时应按不同的激励角度进行分析。对刚构-连续组合曲线梁桥采用固结刚度较大的桥墩,可以提高整个桥梁的刚度,减少整体的位移,有利于桥梁抗震。  相似文献   

13.
株六复线新响琴峡大桥温度效应分析   总被引:1,自引:0,他引:1  
新响琴峡大桥是新建株六铁路复线上一座大跨度预应力混凝土桥。在交付运营约2年后,该桥出现了混凝土裂缝和表面剥落等病害。为了查明病害产生的原因,运用有限元软件ANSYS建立有限元仿真模型,对该桥的温度分布和温度应力进行分析。分析结果表明:最大横向日照温度梯度出现在冬天,沿腹板板厚的最大温差为17.5℃,此时箱梁内侧的最大横向温度拉应力为2.34 MPa。可见,由日照引起的横向温度应力是该桥出现病害的主要因素之一。因此,在道砟桥面混凝土铁路桥梁设计中,应对日照引起的横向温度梯度和温度应力予以重视。  相似文献   

14.
磁浮系统对于轨道梁的温度变形控制要求极高,现有规范对于温度梯度的规定没有考虑不同地区气候因素的影响。在已有文献试验数据的基础上,验证有限元拟合箱梁温度效应的正确性,建立磁浮箱梁有限元模型,研究日大气环境下箱梁在上海与青岛两地的温度效应,在此基础上研究风速对于箱梁温度梯度的影响。结果表明:不同地区由于日照辐射、风速、大气温度等因素的不同,箱梁的竖向与横向最不利温差大小不一致,但温差分布趋势一致;竖向与横向温差梯度与规范相比存在一些区别,主要表现为温差不是单方向减小;3种方法计算的竖向温度变形中,拟合公式由于没有考虑箱梁横向温度梯度,其计算的竖向温度变形最小,规范公式与三维模型计算结果相近;风速对于箱梁的温差有较大影响,风速越大,温差越小,实际工程应考虑当地风速的大小。  相似文献   

15.
李克冰 《铁道建筑》2022,(11):62-66
建立不同截面形式的钢混组合梁有限元热分析模型,对典型时段的日照温度场进行数值仿真分析,研究不同因素对温度场的影响。结果表明:钢混组合梁日照温差主要分布在混凝土板厚范围内,钢主梁沿腹板高度方向上的温度梯度较小;与箱形主梁钢混组合梁相比,双工字形主梁钢混组合梁混凝土板温度沿横向分布更均匀;箱形主梁钢混组合梁桥面中线处顶板板厚竖向最大温差为11.67℃,双工字形主梁钢混组合梁混凝土板厚温差小于箱形主梁钢混组合梁,最大温差为7.44℃;随着大气透明度系数的增大,钢混组合梁混凝土板厚温度差呈线性增大,大气透明度系数每增加0.1,箱形主梁钢混组合梁板厚温差增大1.7~1.9℃,双工字形主梁钢混组合梁板厚温差增大1.2~1.5℃;随着风速的增大,钢混组合梁混凝土板厚温差呈二次函数形式减小,箱形主梁钢混组合梁板厚温差受风速影响比双工字形主梁钢混组合梁更大。  相似文献   

16.
为探讨温度对受力复杂的曲线斜拉桥结构成桥使用舒适性及安全性的影响,以刚果布拉柴维尔滨河大道桥为工程背景,以9个不同曲率半径斜拉桥模型为例,分别计算其在季节温差和梯度温度工况下主梁竖向位移、支座反力的变化情况,分析温度荷载对曲线斜拉桥支座反力的影响规律。结果表明:梯度温度正温差工况下,曲线外侧主梁的竖向位移总是小于内侧,致使主梁发生向外翻转的趋势,且随着曲率半径减小翻转趋势越来越明显;曲线段外侧支反力大于内侧,其中过渡墩支座所受影响最大;整体升温效应会使全桥梁段产生向外扭转趋势,但影响小于梯度温度正温差,且整体升温还会使桥梁结构产生跨中上拱、边跨下挠的趋势。  相似文献   

17.
研究目的:贵广铁路黄沙河桥采用1-80 m预应力混凝土系杆拱桥,系国内最大跨度的预应力混凝土系杆拱桥(混凝土拱肋),其箱宽较宽,采用单向多室结构。有效宽度、边中腹板厚度比例等均没有规范依据可查,横向环框简化计算模型没有相关的依据。本文利用midas FEA软件对80m系杆拱桥进行实体计算分析,确保结构安全,并对结构尺寸、钢束布置等进行一些探讨。研究结论:梁部的混凝土应力处于合理的水平,结构安全可靠;拱脚位置梁体正应力横向分布不均匀,远离拱脚的梁体截面正应力分布较为均匀;多腹板以及密横隔板形成的纵横向隔板体系增强了梁部结构整体性,箱梁横向位移差最大值仅仅为0.51 mm;设置拱脚竖向预应力能够有效减少拱脚与梁体交界面混凝土的主拉应力,增强交接面的抗剪能力,是必须的。  相似文献   

18.
城市轨道交通大跨度小半径曲线梁桥设计   总被引:1,自引:0,他引:1  
轨道交通大跨度小半径曲线梁桥具有受力复杂、车辆荷载大、设计难度高等特点。曲线梁桥由于轴向变形与平面内弯曲耦合,竖向挠曲与扭转耦合,以及弯曲、扭转与截面畸变耦合等因素,易发生梁体水平径向位移过大、梁体翘曲、墩梁固结处开裂、支座脱空等工程问题。依托大连轻轨某小半径大跨度预应力混凝土曲线梁桥工程,通过对曲线桥梁受力情况的分析,考虑变形耦合效应,确定了截面、钢筋及预应力钢束设置等关键技术参数,并针对曲线梁存在的"外梁超载,内梁卸载"问题,对支承形式及偏心等关键参数进行了讨论。研究表明,采用单箱单室截面、合理设置钢筋、预应力约束、支座等措施能有效解决此类工程问题。  相似文献   

19.
针对既有线上大量预应力混凝土简支双T梁桥出现横向刚度不足、横向振幅超限问题.采用大型有限元软件ANSYS,以双T梁实际尺寸建立有限元模型,对梁体加固前、后进行模态分析.在分析大量计算数据的基础上,综合考虑梁体横向和竖向刚度的变化,确定了较为合理的横向加固方案.实践证明,方案是成功的,进一步证明了该方法的可行性.  相似文献   

20.
竖向预应力损失过大是导致混凝土箱梁腹板开裂的主要原因之一,在竖向预应力损失中钢筋回缩损失占绝大部分。本文提出一种操作简单、传感器可以重复使用的竖向预应力回缩损失测量方法,对6座实桥竖向预应力回缩损失进行实测,共获得239个实测样本。样本检验表明竖向预应力回缩损失服从皮尔逊Ⅲ曲线y=f(珡X,Cy,Cs)分布,得到满足工程可靠度0.95的竖向预应力损失值为73.6kN。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号